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Abstract—Malicious web pages that use drive-by download
attacks or social engineering techniques to install unwanted
software on a user’s computer have become the main avenue
for the propagation of malicious code. To search for malicious
web pages, the first step is typically to use a crawler to collect
URLs that are live on the Internet. Then, fast prefiltering
techniques are employed to reduce the amount of pages that
need to be examined by more precise, but slower, analysis
tools (such as honeyclients). While effective, these techniques
require a substantial amount of resources. A key reason is that
the crawler encounters many pages on the web that are benign,
that is, the “toxicity” of the stream of URLs being analyzed is
low.

In this paper, we present EVILSEED, an approach to search
the web more efficiently for pages that are likely malicious.
EVILSEED starts from an initial seed of known, malicious
web pages. Using this seed, our system automatically generates
search engines queries to identify other malicious pages that
are similar or related to the ones in the initial seed. By doing
so, EVILSEED leverages the crawling infrastructure of search
engines to retrieve URLs that are much more likely to be
malicious than a random page on the web. In other words
EVILSEED increases the “toxicity” of the input URL stream.
Also, we envision that the features that EVILSEED presents
could be directly applied by search engines in their prefilters.
We have implemented our approach, and we evaluated it on a
large-scale dataset. The results show that EVILSEED is able to
identify malicious web pages more efficiently when compared
to crawler-based approaches.

Keywords-Web Security, Drive-By Downloads, Guided Crawl-
ing

I. Introduction

The web has become the medium of choice for people to
search for information, conduct business, and enjoy entertain-
ment. At the same time, the web has also become the primary
platform used by miscreants to attack users. For example,
drive-by-download attacks are a popular choice among bot
herders to grow their botnets. In a drive-by-download attack,
the attacker infects a (usually benign) web site with malicious
code that eventually leads to the exploitation of vulnerabilities
in the web browsers (or plug-ins) of unsuspecting visitors [1],
[2]. If successful, the exploit typically downloads and executes
a malware binary, turning the host into a bot [3].

In addition to drive-by-download exploits, cybercriminals
also use social engineering to trick victims into installing or
running untrusted software. As an example, consider a web
page that asks users to install a fake video player that is
presumably necessary to show a video (when, in fact, it is a
malware binary). Another example is fake anti-virus programs.
These programs are spread by web pages that scare users into
thinking that their machine is infected with malware, enticing
them to download and execute an actual piece of malware as
a remedy to the claimed infection- [4], [5].

The web is a very large place, and new pages (both legitimate
and malicious) are added at a daunting pace. Attackers
relentlessly scan for vulnerable hosts that can be exploited and
leveraged to store malicious pages, which are than organized
in complex malicious meshes to maximize the changes that a
user will land on them. As a result, it is a challenging task to
identify malicious pages as they appear on the web. However,
it is critical to succeed at this task in order to protect web users.
For example, one can leverage information about web pages
that compromise visitors to create blacklists. Blacklists prevent
users from accessing malicious content in the first place, and
have become a popular defense solution that is supported by all
major browsers. Moreover, the ability to quickly find malicious
pages is necessary for vendors of anti-virus products who need
to obtain, as fast as possible, newly released malware samples
to update their signature databases.

Searching for malicious web pages is a three-step process,
in which URLs are first collected, then quickly inspected with
fast filters, and finally examined in depth using specialized
analyzers. More precisely, one has to first collect pointers to
web pages (URLs) that are live on the Internet. To collect
URLs, one typically uses web crawlers, which are programs
traversing the web in a systematic fashion. Starting from a
set of initial pages, this program follows hyperlinks to find as
many (different) pages as possible.

Given the set of web pages discovered by a crawler, the
purpose of the second step is to prioritize these URLs for
subsequent, detailed analysis. The number of pages discovered
by a crawler might be too large to allow for in-depth analysis.



Thus, one requires a fast, but possibly imprecise, prefilter to
quickly discard pages that are very likely to be legitimate. Such
prefilters examine static properties of URLs, the HTML code,
and JavaScript functions to compute a score that indicates the
likelihood that a page is malicious. Based on these scores,
pages can be ranked (sorted). For example, according to a
report that describes the system deployed at Google [2], the
company analyzes one billion URLs every day. To handle this
volume, a prefilter is deployed that shrinks the number of
pages to be inspected in depth by three orders of magnitude.

For the third step, we require detection systems that can
determine with high accuracy whether a web page is malicious.
To this end, researchers have introduced honeyclients. Some
of these systems use static and/or dynamic analysis techniques
to examine the HTML content of a page as well as its active
elements, such as client-side scripting code (typically JavaScript
scripts or Java applets). The idea is to look for signs of
well-known exploits or anomalous activity associated with
attacks [6]–[8]. Other detection systems look for changes to
the persistent state of the operating system (such as additional
files or processes) [2], [9], [10] once a page has been loaded.
These changes often occur as a result of a successful exploit
and the subsequent execution of a malware binary. Of course,
detection systems are much more precise than prefilters, but
they are also much slower (the analysis of a page can take
seconds; prefilters can be several orders of magnitude faster).

The resources for identifying malicious pages are neither
infinite nor free. Thus, it is essential to perform this search-
and-analysis process in an efficient way so that one can find
as many malicious pages as possible in a fixed amount of
time.

In this paper, we propose an approach that improves the
efficiency of the first step of the search process, augmenting
it by opportunistically relying on the data that search engines
collected with their crawlers. More precisely, we propose a
system, called EVILSEED, which complements the (essentially
random) web crawling approach with a guided search for
malicious URLs. EVILSEED starts from a set of known pages
that are involved in malicious activities. This set contains
malicious pages that were directly set up by cybercriminals
to host drive-by-download exploits or scam pages. The set
also includes legitimate pages that were compromised and,
as a result, unknowingly expose users to malicious code or
redirect visitors to attack pages. In the next step, EVILSEED
searches the web for pages that share certain similarities with
the known malicious pages. We call this a “guided search”
of the web, because it is guided by the current knowledge of
known malicious web pages. Of course, these searches are
not guaranteed to return only malicious pages. Thus, it is still
necessary to analyze the search results with both prefilters and
honeyclients. However, the key advantage of our approach is
that a result of our guided search is much more likely to be
malicious than a web page found by randomly crawling. Thus,

given a fixed amount of resources, our approach allows us to
find more malicious pages, and we do so quicker.

We also believe that EVILSEED would be beneficial to search
engines. Although it is difficult to provide data supporting this
claim, since the details of the infrastructure that search engines
use to create their blacklists are confidential, we have observed
several cases in which EVILSEED led our small cluster to
detect malicious web pages faster then search engines. For
example, in January 2010 EVILSEED identified a malware
infection campaign with hundreds of URLs that, although
inactive, can still be found by querying Google and Bing for
“calendar about pregnancy”. We observed these two search
engines incrementally, and slowly, blacklisting URLs belonging
to the campaign over the next ten months, until the campaign
was eventually shut down. By applying EVILSEED, the lifetime
of this campaign would have been much reduced, protecting
the users of these engines.

Our approach is built upon two key insights. The first one
is that there are similarities between malicious pages on the
web. The reason is that adversaries make use of automation
to manage their campaigns. For example, cybercriminals
search the web for patterns associated with vulnerable web
applications that can be exploited by injecting malicious code
into their pages [11], [12]. Also, cybercriminals use exploit
toolkits to create attack pages [13], and they often link many
compromised pages to a single, malicious site to simplify
management.

The second insight is that there are datasets and tools
available that make it easier to find malicious URLs. Most
notably, search engines (such as Google and Bing) have
indexed a large portion of the web, and they make significant
investments into their crawler infrastructures to keep their
view of the web up-to-date. We leverage this infrastructure,
as well as other datasets such as passive DNS feeds, for
our guided search process. Note that we do not propose to
completely replace traditional web crawlers when searching for
malicious web pages. Guided search is a process that allows
us to automatically and efficiently find malicious pages that
are similar to ones that have already been identified. Random
crawling is still necessary and useful to find new pages that
are different than those already known.

In the past, cybercriminals have used search engines to
find vulnerable web sites [11], [12], [14], [15]. In particular,
cybercriminals perform manually-crafted search queries to
find pages that contain certain keywords that indicate the
presence of vulnerabilities. Previous work has extensively
studied malicious search engine queries. More precisely, re-
searchers have examined search query logs for entries that
were likely to be issued by cybercriminals. Such query strings
can then be extracted (and generalized) as signatures to block
bad queries [11], [12]. In [12], the authors also examine the
results that a search engine returns for malicious queries to
identify potentially vulnerable hosts.



In this paper, we do not attempt to identify or study manually-
crafted, malicious queries used by cybercriminals. Instead, we
propose a search process that allows us to find malicious pages
that are similar to those previously identified. As part of this
process, we do submit queries to search engines. However,
these queries are automatically generated, based on the analysis
of different data sources such as a corpus of known, malicious
pages and DNS data feeds (but no access to search engine
logs). Moreover, our searches target a broader range of pages
than those targeted by attackers who use search engines for
locating vulnerable web sites. In particular, we are not only
interested in finding compromised (vulnerable), legitimate
pages, but also malicious pages that are directly set up by
attackers.

The main contributions of this paper are the following:
• We developed a novel approach to guide the identification

of malicious web pages starting from an initial set of
known, malicious web pages.

• We described several novel techniques for the extraction
of features from malicious web pages that can be used in
queries submitted to existing search engines to identify
more malicious web pages.

• We implemented our techniques in a tool and we evaluated
it on a large set of malicious web pages, demonstrating
the approach is effective and improves the state of the
art.

II. System Overview

In this section, we describe in detail the goals of our work,
and we provide a brief overview of the overall approach and
the components of our system.

A. System Goal

As mentioned previously, searching for malicious pages on
the web is a three-step process: Crawl to collect URLs, apply
a fast prefilter to discard obviously benign pages, and use a
precise-but-slow oracle to classify the remaining pages. In
this paper, our goal is to improve the efficiency of the web
crawling phase. More precisely, we have developed techniques
that allow us to gather URLs that have a higher “toxicity” than
the URLs that can be discovered through (random) crawling.
With toxicity, we refer to the percentage of URLs in a set that
point to malicious web pages.

Our techniques are based on the idea of searching for
pages that are similar to ones that are known to be malicious.
Intuitively, rather than randomly searching for malicious pages,
EVILSEED focuses its searches “near” known malicious pages.
More precisely, EVILSEED implements different techniques
to extract from a page features that characterize its malicious
nature; pages with similar values for such features (the
“neighborhood” of a page) are also likely to be malicious.
Then, by using the features extracted from an evil seed and
by leveraging existing search engines, EVILSEED guides its
search to the neighborhood around known malicious pages.

We use the notion of “maliciousness” in a broad sense, and
our general techniques are independent of the exact type of
threat that a particular page constitutes. For the current version
of EVILSEED, we consider as malicious a page that, when
visited, leads to the execution of a drive-by download exploit
(possibly after redirecting the user). In addition, we consider
a page to be malicious when it attempts to trick a user into
installing a fake anti-virus program.

In this paper, we use the term web page and URL
synonymously. That is, the actual inputs to and the “unit
of analysis” of our system are URLs. In most cases, a page is
uniquely identified by its corresponding URL. However, there
are cases in which attackers create many URLs that all point
to the same, underlying malicious page. In this situation, we
would count each URL as a different, malicious page.

B. System Architecture

The general architecture of EVILSEED is shown in Figure 1.
The core of our system is a set of gadgets. These gadgets
consume a feed of web pages that have been previously
identified as malicious (as well as other data feeds, such as
domain registration feeds). Based on their input, the gadgets
generate queries to search engines. The results returned by the
search engines are then forwarded to an (existing) analysis
infrastructure.

The key idea of our approach is that we can leverage the
infrastructure of search engines and the data that they have
collected. To this end, we query search engines in such a
way that the URLs that they return have a higher probability
of being malicious than a random page on the web (or the
probability that can be achieved by directly crawling the web).
Of course, the main challenge is to formulate the search queries
such that the results indeed have a high probability of pointing
to malicious pages. We assume that we have at our disposal an
oracle (and optionally, a prefilter) that can be used to analyze
a web page and determine whether it is malicious or not. Of
course, the type of oracle depends on the precise notion of
maliciousness that is used. We discuss possible oracles below;
an example of an oracle that can detect drive-by download
exploits would be a cluster of honeyclients.

In the following paragraphs, we discuss the components of
our system in more detail:
Seed. The (evil) seed is a set of pages that have been previously
found to be malicious. These pages form the input to gadgets.
Of course, whenever gadgets discover new pages that the
oracle confirms to be malicious, they can be added to the set
of seed pages. One can distinguish two main types of pages
in the seed. First, there are pages that were directly set up by
cybercriminals. Typically, these are pages that directly contain
scripting (mostly JavaScript) code that launches exploits, or
links to malware binaries, such as fake AV programs. A
previous paper refers to such pages as malware distribution
pages [2]. The second type of pages is not malicious per se.
Instead, they are legitimate pages that have been compromised.
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Figure 1. EVILSEED overview.

In most cases, such legitimate pages do not host any malicious
code themselves. Instead, they only include a small piece
of HTML or JavaScript that redirects the user to malware
distribution sites. Such compromised, legitimate pages are
called landing pages in [2].
Gadgets. Gadgets form the heart of EVILSEED. The purpose
of a gadget is to find candidate pages (URLs) that are likely
malicious based on the pages contained in the seed.

While different gadgets implement different techniques to
achieve this goal, they all follow a common approach. More
precisely, each gadget extracts certain information from the
pages in the seed (Ê in Figure 1), such as content that is
shared among these pages and links that are related to them.

In the next step, the information extracted from the seed
pages is distilled into queries that are sent to search engines
(Ë). These queries can be simple searches for words or terms
that appear on pages indexed by a search engine. Queries can
also leverage advanced features of search engines, such as link
information or restricted searches. Of course, gadgets need
to consider the parts of a page that are indexed by a search
engine. While it might be desirable to search for fragments
of scripts that appear on malicious pages, such content is
typically not indexed (or, at least, not made available through
the public interfaces).

Once a query is issued, the gadgets simply collect the list
of URLs that the search engines return (Ì), and they forward
them to the oracle (or, possibly, a prefilter) for further analysis.
The gadgets that we use in EVILSEED are presented in detail
in Section III.
Oracle. In the current implementation of EVILSEED, the
oracle consists of three components: Google’s Safe Browsing
blacklist [16], Wepawet [6], and a custom-built tool to detect
sites that host fake AV tools. We do not use a prefilter to
analyze the URLs that EVILSEED produces, but this is certainly
a possibility (as depicted in Figure 1). While a prefilter would
reduce the number of pages that the oracle needs to inspect,

it has no influence on the “toxicity” (fraction of malicious
pages) of the URLs that the gadgets produce.

Google creates and makes available a “constantly updated
blacklist of suspected phishing and malware pages.” This
blacklist, publicly accessible through the Safe Browsing API,
is compiled by using a multi-stage process that analyzes more
than one billion pages daily. At the core of the analysis
infrastructure is a farm of (high interaction) honeyclients,
which are particularly suitable to identify drive-by download
attacks with a very low false positive rate.

Wepawet is a client honeypot that uses an instrumented
browser to capture the execution of JavaScript code on web
pages. Based on the recorded execution traces, the system
uses anomaly-based techniques to detect drive-by download
attacks. Wepawet is able to achieve high detection rates with
almost no false positives [6].

As the third component, we use a custom-built detector
for pages that host fake anti-virus software. This detector is
a classifier that uses simple content analysis techniques (a
combination of signatures and term frequency analysis) to
determine if a web page misinforms users about the security
of their computers and deceives them into downloading rogue
security software.

III. Gadgets

The goal of a gadget is to leverage a set of known, malicious
web pages to guide the search for additional, malicious content
on the web. All gadgets perform the same processing steps.
First, they analyze the input seed to identify similarities, that
is, shared characteristics or properties that can be found among
seed pages. Second, they expand the initial seed by querying
one or more external search engines to identify other pages
that share similar characteristics.

The assumption underlying all our gadgets is that malicious
web pages often share a set of common characteristics, which
are determined by the modus operandi and tools available to



Gadget Expansion Inputs

Links Link topology Seed URLs,
Search Engines

Content dorks Content similarity Seed pages source,
Search Engines

SEO Link topology, Seed URLs,
Content similarity Search Engines

Domain registrations Bulk registrations Seed URLs,
Domain registrations

DNS queries Link topology Seed URLs,
DNS trace,
Search Engine

Table I
GADGETS USED BY EVILSEED.

cybercriminals, the side-effects of the attacks they run, or the
tell-tale signs of the vulnerabilities that enable their attacks.

We have implemented five gadgets (see Table I): The links
gadget leverages the web topology (web graph) to find pages
that link to malicious resources; the content dorks gadget aims
at identifying vulnerable and exploited web applications; the
SEO gadget analyzes seed pages that belong to blackhat Search
Engine Optimization campaigns; the domain registrations
gadget identifies suspicious sequences of domain registrations;
and the DNS queries gadget analyzes traces of DNS requests
to locate pages that lead to a malicious domain. We will now
describe each gadget in detail.

A. Links Gadget

This gadget is designed to locate “malware hubs” on the
web. Malware hubs are pages that contain links to several
malicious URLs.1 In our experience, hubs can be grouped
in two categories: vulnerable sites that have been infected
multiple times (this is typical, for example, of unmaintained
web applications), and pages that catalog (and link to) web
malware (this is the case of certain malware discussion forums,
such as malwareurl.com).

This gadget leverages the observation that links contained
on malware hubs are likely to be malicious and, thus, represent
valuable candidate URLs.

Seed. The seed analyzed by the links gadget consists of all
the URLs of known malicious pages.

Expansion. The gadget searches for malware hubs that link
to pages in the input seed. More precisely, the gadget issues
queries using the link operator, e.g., link:<MALICIOUS
URL>. We sent these queries to three different search engines:
Google, Bing, and Yacy. We used multiple search engines
to distribute the load of our queries over multiple sites, and
to increase the diversity of returned result sets. The gadget
retrieves the URLs returned for the search engine queries and
visits the corresponding page. For each visited page, the gadget

1We observe that links to known-malicious pages was a feature used in [2]
and [17]. Our gadget reconstructs the linking structure from search engine
results, rather than directly building the web graph by having access to the
raw crawling data of the search engine.

extracts the URLs of all outgoing links. These URLs are then
submitted to our oracle.

B. Content Dorks Gadget

An effective technique to find vulnerable web sites is to
query a popular search engine with a Google dork. This term
delineates a set of carefully chosen keywords and operators
tailored to retrieve links to vulnerable web pages. For example,
the query “index of /etc/” will cause the search engine
to locate web sites that share their configuration and list of
users through their Apache web server. Likewise, a query for
“powered by PhpBB 2.0.15” will return web sites that are
using an older version of a popular bulletin board software
with known vulnerabilities. The term Google dork was coined
by Johnny Long, originally indicating “inept or foolish people
as revealed by Google.” A number of such dorks have been
manually identified, and they are available in books [18],
online databases [19], and penetration testing tools [20]. Recent
research [12] has also found evidence of the large-scale use
of Google dorks in the wild.

Painstakingly-assembled lists of manually identified Google
dorks may be useful to find malicious web sites. However,
many of the dorks lose their value over time. The reason is
that application vulnerabilities are patched and the targeted
applications are replaced. Thus, we propose a gadget that can
automate the generation of relevant Google dorks.

While the underlying idea of the content dork gadget is
known (and used by cybercriminals to find vulnerable sites),
the novelty of this gadget is the ability to identify suitable
dorks automatically. This has two advantages. First, our system
produces a broad range of dorks that cover the long tail of
less-popular but vulnerable web applications. Second, the
system can quickly react to a wave of attacks that exploit a
previously-unknown vulnerability. As soon as some malicious
pages that exploit this vulnerability are included into the seed,
our system can automatically extract content dorks to find
other, similar sites that fell victim to the same exploit.
Seed. As discussed in Section II-B, our initial dataset of
malicious pages can be divided into malware distribution pages
and landing pages. As a starting point for this gadget, we are
interested in landing pages only, which are originally benign but
vulnerable pages that have been compromised by an attacker,
as opposed to pages directly created by an attacker (e.g., pages
generated with an exploit kit). The reason for focusing on
landing pages is that they contain much more indexable content
than malware distribution pages, and they remain online longer.
Moreover, we expect that legitimate sites that were exploited
because of vulnerabilities in a common, underlying content
management system share characteristic strings that can be
identified (similar in spirit to the “original” Google dorks). To
distinguish between compromised landing pages and malware
distribution pages, we use a simple, two step classification
process: First, we discard pages that are no longer active.
The assumption is that compromised pages, whether they



are cleaned or remain infected, will usually remain available
over longer periods of time. Malware distribution pages, on
the other hand, typically have a short lifetime. Likewise, we
discard pages that, although apparently still active, are in fact
parking pages, that is, pages set up by hosting providers in
lieu of the removed malicious page. In the second step, we
evaluate a number of HTML features that are indicative of
compromised pages. For these features, we leverage previous
work on static web page filters [21], [22]. Examples of the
features that we use to identify a compromised page are the
occurrence of script code after an HTML closing tag, the
number of hidden iframes, and the presence of links to known
advertising domains (as malware distribution pages typically
don’t have advertising).
Expansion. The queries generated by this gadget consist of
n-grams of words that are extracted from the indexable content
of landing pages in our seed. To generate these n-grams, we use
two different techniques: term extraction and n-gram selection.

The term extraction process derives, from the content of
a page, those terms that best summarize the topics of this
page. This analysis typically leverages techniques from the
information retrieval and natural language processing fields.
We extract significant terms from a landing page in our seed by
using Yahoo’s Term Extraction API [23]. As an example, using
it on CNN.com at the time of writing, term extraction yields
Eurozone recession, gay wedding, Facebook attack, graphic
content.

Cybercriminals are known to leverage popular topics to lure
victims into visiting pages under their control. For example,
they place popular terms onto pages, hoping to drive search
engine traffic to the corresponding URLs. Term extraction
allows us to identify and extract these topics automatically, as
new trends are observed: In our experiments, we have seen
terms that reflect topics such as smartphones, e-book readers,
TV series, pharmaceutical products, and adult content. We
use as content dorks all terms that are returned by the Term
Extraction API.

The n-gram selection process extracts all sequences (of
length n) of words from a landing page. Then, it ranks all n-
grams according to their likelihood of occurring in a malicious
page compared to their likelihood of appearing in a benign
page. The intuition is that n-grams that appear much more
frequently in malicious pages than in benign ones are a good
indication for the maliciousness of the page. Therefore, in
addition to the seed of compromised pages, we built a dataset
of benign web pages by crawling the top 16,000 most popular
domains, according to their Alexa ranking (we assume that
these pages are legitimate). To select the most promising n-
grams from a compromised page, we examine all n-grams
that appear on the malicious seed pages. We discard all n-
grams that are present more often in benign pages than in the
malicious ones (based on relative frequencies). In the next
step, we assign a score to each of the remaining n-grams. This
score is equal to the difference between the relative frequency

of an n-gram in the malicious dataset and its relative frequency
in the benign dataset. We consider n-grams that vary from
length n = 2 to n = 5. Once we have computed the score for
each n-gram, we select as content dorks the top 10 n-grams.

All content dorks (those extracted by the n-gram selection
and the term extraction processes) are submitted as queries to
three search engines (Google, Bing, Yacy). We then retrieve
the URLs (links) from the results and submit them to the
oracle.

C. Search Engine Optimization Gadget

Cybercriminals are able to exploit and take control of large
numbers of vulnerable web sites. However, most of these web
sites are likely to be part of the “long tail” of the web, and are
visited by a very small numbers of users. Therefore, drive-by
attacks injected into these websites would only reach a small
pool of potential victims. To reach more users, cybercriminals
use a variety of techniques to drive traffic to the malicious
pages under their control. Unsurprisingly, these include the
use of blackhat Search Engine Optimization (SEO) techniques
to increase the ranking of malicious pages in search engine
results for popular search terms.

According to a report by Trend Micro [24], SEO techniques
have been exploited to spread malware since at least November
2007. More recently, attackers started deploying SEO kits that
are able to automatically generate “rings” of pages optimized
for currently popular search topics [25]–[28]. An SEO kit is
typically a PHP script installed on a compromised web server.
It includes functionality to fetch currently popular search
terms from sources such as Google trends or Twitter trends.
Furthermore, given a search topic, it makes use of a search
engine to obtain text and images relevant to the topic, and
it automatically generates web pages from this raw material.
SEO kits also use several techniques to increase ranking, such
as generating a large number of doorway pages linking to an
optimized page, or using link exchanges between pages on
different exploited sites. Another common characteristic of
SEO kits is the use of semantic cloaking [29], [30]. That is,
the exploited web sites respond with completely different
content depending on the source of a request. Based on
information such as the source IP address of the request and
the User-Agent and Referer HTTP headers, attackers
may attempt to provide a benign, SEO optimized page to
search engine crawlers, a malicious page to end users, and a
benign page to security researchers and analysis tools.

Several characteristics of large-scale, automated blackhat
SEO campaigns make it possible for EVILSEED to discover
other malicious SEO-optimized web sites starting from a URL
that is part of such a campaign.

• Attackers host many different web pages, optimized for
different search terms, on each web site in a campaign.

• Attackers host pages optimized for the same search terms
on different web sites in a campaign.

• Pages in a campaign often link to each other.



These characteristics are a consequence of the fact that
attackers want to make the best use of the available resources
(a finite number of compromised web sites) to obtain a high
search ranking for a wide variety of popular search terms.
Seed. As a starting point, the EVILSEED SEO gadget needs at
least one malicious URL that is part of an SEO campaign. To
identify likely blackhat SEO URLs, we use a simple cloaking
detection heuristic. The idea is that a malicious page that
provides different content to search engine bots and to end
users is likely trying to manipulate search engine rankings.

Detecting semantic cloaking and distinguishing it from
syntactic cloaking [31], as well as from normal variation
of web content over time, is itself not a trivial problem. In
this work, we use a simple cloaking detection heuristic that
is limited to detecting redirection-based cloaking, because
this form of cloaking is frequently used in blackhat SEO
campaigns. Research into more sophisticated cloaking detection
techniques [29], [30] is orthogonal to this work, and it would be
straightforward to integrate such techniques into our prototype.

To detect cloaking, we visit a URL three times, providing
different values for the User-Agent and Referer HTTP
headers. First, we visit the URL as a user that has reached
the site from Google. For this, we use the User-Agent
of a popular browser, and a Referer header corresponding
to a Google search query. Then, we visit the URL with no
Referer header, emulating a user who directly typed the
URL into her browser’s address bar. Finally, we visit the URL
emulating the behavior of Google’s indexing bot. For this, we
rely on GoogleBot’s well-known User-Agent string. We follow
HTTP redirections and consider the final “landing” domain
from which the browser receives a successful (2xx) HTTP
response. We detect cloaking if, during the three visits to a
URL, we observe two or more different landing domains.

Furthermore, since blackhat SEO campaigns are known
to target popular searches obtained from Google and Twitter
trends, we extend the seed for this gadget by fetching Google
and Twitter trends, querying Google for the resulting topics,
and checking the returned URLs with our cloaking detection
heuristic.
Expansion. Once we have identified at least one cloaked,
malicious URL, we can attempt to locate other URLs in the
same blackhat SEO campaign. For this, we use a number of
techniques to identify additional candidate URLs. First of all,
for each domain hosting a cloaked, malicious web site, we
perform a Google query using the site: modifier to locate
other pages on that domain. We fetch the query results and
add them to the set of candidate URLs. This allows us to find
other malicious pages on the same site that may have been
optimized for different search terms. Furthermore, we follow
links in the malicious cloaked pages. Specifically, we consider
the version of the page that was served to us when we surfed
the page emulating the Google indexing bot, and consider any
external links contained in that page. We add the target URLs
of these links to the candidate URLs.

Finally, we try to identify the search terms for which a page
has been optimized. For this, we do not take into account
the content we downloaded from the URL. Instead, we rely
exclusively on information provided by Google about that
URL as part of its search results. The reason is that we cannot
be certain that we have been able to deceive the malicious
website into sending us the content intended for search engines
(some SEO kits include a hard-coded list of search engine
bot IP addresses, and perform IP-based cloaking [25]). Using
Google’s results allows us to sidestep this problem, and obtain
a subset of the page as it was delivered to Google’s bot. The
information provided by Google consists of the page title and
a number of snippets of the page’s content. This information is
typically shared between many pages in a SEO campaign [28].

The SEO gadget simply extracts the title of the page, and
queries Google for the set of words in the title. The results of
the query are then fetched and added to the candidate URLs.

D. Domain Registrations Gadget

Blacklists are one of the most widespread techniques to
protect users against web malware. In a domain-based blacklist,
a domain is added to the list as soon as it is discovered to
host malicious content. As a countermeasure, cybercriminals
are known to serve their content from short-lived domains,
frequently switching domains to maximize the time they
remain unlisted. To run an efficient business in this arms race,
cybercriminals are likely to automate the domain generation
and registration process. This automation leaves behind some
artifacts, giving us some leverage to identify these domains.
More precisely, we assume that registrations that are close in
time to the registration of known malicious domains are also
likely to be malicious.
Seed. The seed used by the Domain Registrations Gadget
consists of all the domains that are known to host malicious
pages, and domain registration records which are freely
available online.
Expansion. This gadget extracts the domain of a malicious
seed URL, and flags the domains that have been registered
before and after as suspicious.

These domains are then used to create URLs that are
scheduled for analysis. The URL creation consists of taking the
closest known malicious registration (for which we know the
corresponding malicious URL), and replacing the domain with
the suspicious domain that we have just flagged. For example, if
a.com has been registered just moments before b.com, and
we know that http://a.com/exploit is malicious, the
gadget will submit for analysis http://b.com/exploit.

Note that this gadget does not leverage search engines
to find additional malicious URLs. However, it still follows
EVILSEED’s guided search philosophy.

E. DNS Queries Gadget

The DNS queries gadget analyzes recursive DNS (RDNS)
traces. The goal is to identify the domain names of compro-
mised landing pages that are likely to lead to malicious pages.
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Figure 2. Example DNS trace.

The gadget works in two steps: First, it leverages temporal
relationships in a DNS trace to identify domains that are likely
connected to malicious domains. More precisely, the gadget
checks for queries for domain DL “shortly before” a query for
domain DP , which is known to host malicious pages. Then,
the gadget identifies pages (URLs) on DL that may redirect
their visitors to an evil page P hosted on DP .
Seed. The seed used by the DNS queries gadget consists of
all the domains that are known to host malicious pages.
Expansion. This gadget’s expansion relies on the fact that,
often, a large number of infected pages contain links to
a single, malicious page, and that DNS traces (partially)
expose these connections. In practice, we passively monitor
the recursive DNS traffic generated by a large user base.
This traffic can be collected, for example, by deploying
a sensor in front of the RDNS server of a network. We
assume that a network user, during her regular Internet activity,
will browse to a compromised landing page L (hosted on
DL) that redirects to P , one of the URLs that are part of
our evil seed. This browsing activity appears in the DNS
trace as a sequence of DNS requests issued by the same
client, querying, in a short period of time, for DL first, and
for DP later. Note that while we expect that queries for
DL and DP be close in time, in general, they will not be
consecutive. This is because of concurrent network activity on
the user’s machine (e.g., software updates and email checks)
and because of queries needed to fetch additional resources
(e.g., external images and scripts) included by L before the
redirection to P . For example, consider the DNS trace in
Figure 2. The trace shows the DNS requests performed by one
client over time. In this interval, the client visits a web site
(www.rotarynewalipore.in), checks email on hotmail.com, and
performs a system update (windowsupdate.com). The trace ends
with the request of a known malicious domain (aquarigger.com),
which is reached during the web site visit. The gadget scans
the DNS trace for queries about domains in the evil seed.
Whenever one is found, the gadget considers as candidate
domains those domains that were queried by the same client
in the preceding N seconds (in the current implementation,
this window is empirically set to four seconds). In our
example, the candidate domains are www.rotarynewalipore.in,
mx1.hotmail.com, windowsupdate.com, and doubleclick.net.

Given a set of candidate domains, the gadget generates
URLs from these domains. Of all the possible pages on a
candidate domain, the gadget chooses those that are more

likely to be accessed by a web visitor. We consider three cases.
First, a user is likely to access a domain by visiting its home
page, for example, by typing its URL directly in the browser’s
address bar. Second, users may visit pages returned in the
result set of a search query. This set includes highly-ranked
pages from that domain. Finally, a user is likely to follow links
to pages on the candidate domain contained in popular (i.e.,
high-ranking) pages on different domains. (Notice that these
linked-to pages do not necessarily possess a high ranking,
due to mechanisms such as the nofollow attribute value
designed to mitigate the impact of web spam [32].)

Therefore, for each domain Di in the considered time
window, the gadget includes, as candidate URLs, the home
page of the domain and the URLs obtained by querying search
engines for:

• site:Di — top-ranking pages from the candidate
domain Di,

• "http://Di/" -inurl:Di — URLs on Di found
on different sites, including potentially spammed pages.

In our example, the analysis of www.rotarynewalipore.in
shows that it is infected with malicious JavaScript code that
leads to a drive-by-download web page on aquarigger.com.
Discussion and analysis. The DNS queries gadget has a few
limitations. First, the trace analysis is simplified by ignoring
the effects of caching and pinning of DNS responses performed
by modern browsers. In other words, we assume that whenever
a user browses from L to P , her browser resolves DL and
DP , irrespective of previous visits to these domains. If this
assumption does not hold, our gadget may be unable to locate
landing pages redirecting to the malicious domain. For example,
this occurs if the user first visits a page on DL that does not
trigger a redirection to the malicious domain, and then browses
to L after an amount of time that is larger than the window
considered by the gadget, but shorter than the DNS cache
expiration interval used by the browser. However, we argue that
this scenario is unlikely to occur frequently in practice. The
reason is that attackers have incentives to maximize the traffic
to the malicious domain and, therefore, to force a redirection
to the malicious domain on the first visit of a page on DL.

Similarly, if the redirection from a landing page to the
malicious page is triggered after a time delay that is longer
than the window considered by our gadget, the gadget will
not be able to identify DL. Also in this case, we argue that
attackers are not likely to introduce such delays. This is because
the delay may allow a significant number of users to escape
the attack, for example, by simply navigating away from the
landing page.

Finally, we also assume that traffic to malicious pages is
generated via web-based techniques: clearly, this gadget would
not be effective if links to malicious domain are circulated
via other medium, e.g., by spam emails or instant messages.

We also notice that, like the links gadget, this gadget relies
on the network topology to locate additional malicious web
content. However, unlike the links gadget, the DNS queries



gadget does not obtain topology information from search
engines. This allows the DNS queries gadget to leverage
network topology information that may not be visible to search
engines. This is a significant advantage because attackers
actively try to prevent search engines from indexing (and
possibly detecting) malicious content (e.g., by using semantic
cloaking). Furthermore, this provides more up-to-date results
(the gadget does not need to wait for the search engine crawler
to have updated topological data). Of course, only connections
exposed by the visits of actual users are visible to the gadget.

IV. Evaluation

In this section, we experimentally validate our initial
hypothesis that the guided search approach used in EVILSEED
is effective at locating malicious pages, and it does so in an
efficient manner. We use two key metrics to establish the
effectiveness of our system: toxicity and expansion.

The toxicity is the fraction of the URLs submitted to the
oracles that are, in fact, malicious. Higher values of toxicity
imply that the resources needed to analyze a page (e.g., the
oracle’s CPU and time) are used more efficiently.

Seed expansion is the average number of new malicious
URLs that EVILSEED finds for each seed. Intuitively, the
seed expansion is a measure of the return on the investment
provided by running a certain searching approach: A higher
seed expansion indicates that for each malicious seed URL a
larger number of malicious URLs are found. For example, if
after a day of traditional crawling 100 malicious URLs are
found and, when these URLs are fed to EVILSEED, the system
identifies 150 additional malicious pages, then the expansion
of the system is 1.5.

There is a trade-off between toxicity and seed expansion:
a higher expansion can be obtained at the cost of a lower
toxicity (e.g., starting a traditional crawl, which does not
require any seed). Since EVILSEED is designed to achieve a
higher efficiency in locating malware, our main focus will be
obtaining a high toxicity.

A. Effectiveness of EVILSEED

EVILSEED is meant to complement a traditional crawler-
based approach, so we ran our system in parallel with a
traditional crawler. In this setting, both the crawler and
EVILSEED submit URLs to the oracles, as shown in Figure 1.
Whenever a malicious URL is found by the crawler, it is
included in the seed used by EVILSEED. The oracles that we
use for evaluation are Wepawet, Google Safe Browsing, and a
custom fake AV detector (see Section II). We ran this setup for
25 days, using all gadgets except the DNS queries (for which
we did not have access to a trace dataset during this time)
and the domain registration gadget (which was developed at
a later stage). To assess the performance of EVILSEED, we
evaluated our approach against two reference approaches for
finding malicious URLs: a traditional crawler coupled with a
fast prefilter, and random searches.

Crawler & prefilter: In this approach, we use a traditional web
crawler to traverse the web and use a fast prefilter to select
the pages to analyze with our oracles. The crawler is seeded
with “trending” terms from Google Trends and Twitter terms,
which are known to be often abused by attackers. The fast
filter uses static characteristics of a page to quickly identify
and discard pages that are likely to be benign, in a vein
similar to Prophiler [21]. This setup allows us to compare
EVILSEED with a traditional, crawler-based infrastructure for
finding malicious web pages.
Web searches: In this approach, we send a variety of queries
to search engines, and submit the results to our oracles. The
rationale for comparing with web searches is to contrast
the toxicity of the URLs found by EVILSEED with the
intrinsic toxicity of search engine results. The toxicity of
search engine results is affected by two competing forces:
criminals using search engine optimization, and search engines
pruning malicious results.

To generate web queries, we use the following strategies:
• Random alphabetic phrases, composed of 1 to 5 words,

of length from 3 to 10 characters (e.g., “asdf qwerou”);
• Random phrases with words taken from the English

dictionary, from 1 to 5 words (e.g., “happy cat”);
• Trending topics taken from Twitter and Google Hot Trends

(e.g., “black friday 2011”);
• Manually-generated Google dorks, taken from an online

repository (e.g., “allinurl:forcedownload.php?file=”, which
locates vulnerable WordPress sites) [19].

Table II shows an overview of the results of the experiments.
EVILSEED submitted 226,140 URLs to the oracles, of which
3,036 were found to be malicious, for a toxicity of 1.34%.
The Crawler & prefilter setup discovered 604 malicious URLs
(these are the URLs we use as seeds for EVILSEED). The
stream of URLs generated by this approach had a toxicity of
0.14%, which is an order of magnitude less than EVILSEED.
The web search setup found 219 malicious URLs for a total
toxicity of 0.34% (Table II shows results for individual search
strategies). Interestingly, the toxicity of search engine results
is 2–3 times higher than a random crawl, likely indicating that
search engines are heavily targeted by attackers.

The seed expansion (the ratio between the number of
malicious pages that were identified and the initial evil seed)
shows that the gadgets can generate a stream of malicious
URLs of a magnitude comparable to (or larger than) the number
of seeds. The only exception is the SEO gadget, which during
the time of this experiment, found only 16 malicious URLs
(using 604 evil seeds). We explain this result by noticing that,
during this time, the gadget was not able to identify a live SEO
campaign, which it requires to produce its feed. We will show
later the performance of this gadget when SEO campaigns are
active.

Overall, this experiment shows that EVILSEED clearly
outperforms in toxicity both crawling (1.34% vs. 0.14%) and
web searching (1.34% vs. 0.34%). These results also show



Source Seed URLs Visited Queries URLs analyzed Malicious URLs Toxicity Expansion

EVILSEED
Links 604 82,391 5,470 71,272 1,097 1.53% 1.81
SEO 604 312 - 312 16 5.12% 0.02
Content Dorks (keywords) 604 13,896 1,432 13,896 477 3.43% 0.78
Content Dorks (ngrams) 604 140,660 7,277 140,660 1,446 1.02% 2.39

Total 237,259 14,179 226,140 3,036 1.34% 5.02

Crawler w/ Prefilter 3,057,697 - 437,251 604 0.14%

Web Search
Random Strings 24,137 504 24,137 68 0.28%
Random Dictionary 27,242 599 27,242 107 0.39%
Trending Topics 8,051 370 8,051 27 0.33%
Manual Dorks 4,506 87 4,506 17 0.37%

Source Seed Domains visited Queries Domains analyzed Malicious domains Toxicity Expansion

EVILSEED
Links 98 9,882 5,470 7,664 107 1.39% 1.09
SEO 98 7 - 7 5 71.42% 0.07
Content Dorks (keywords) 98 3,245 1,432 3,245 119 3.66% 1.22
Content Dorks (ngrams) 98 33,510 7,277 33,510 263 0.78% 2.68

Total 46,644 14,179 44,426 494 1.12% 5.04

Crawler w/ Prefilter 407,692 - 53,445 98 0.18%

Web Search
Random Strings 4,227 504 4,227 16 0.37%
Random Dictionary 9,285 599 9,285 35 0.37%
Trending Topics 1,768 370 1,768 8 0.45%
Manual Dorks 3,032 87 3,032 13 0.42%

Table II
EVILSEED EVALUATION: URLS AND DOMAINS.

that adding even relatively few new pages to the set of evil
seeds enables EVILSEED to locate significant numbers of
additional malicious pages. More precisely, during these 25
days, EVILSEED discovered over five times more malicious
URLs than the crawler (the expansion is 5.2), visiting 92%
less pages.
What is the cost of querying search engines? Our gadgets
query search engines to identify pages that are likely malicious.
Clearly, if EVILSEED required disproportionately many queries
to perform its guided search, then its advantages (increased
toxicity and expansion) would be outweighed by the cost of
querying search engines. This is not the case with the gadgets
we have implemented. Table II reports the number of queries
executed by each gadget: as it can be seen, the number of
search engine queries generated by EVILSEED scales linearly
with the number of malicious URLs discovered: approximately
1 every 4 queries leads EVILSEED to such an URL.
Does EVILSEED find malicious URLs on different domains?
A search procedure that finds malicious content on different
domains is more valuable than one that only discovers it on a
few domains: different malicious domains may be indicative of
different attack campaigns, and more domains can be added to
domain blacklists. Table II shows the results of our evaluation
at the domain level (subdomains are not considered as different
domains). We observe that, on average, the crawler finds 6.16
malicious pages per domain. These results show that EVILSEED
maintains the same domain coverage as the crawler, finding
an average of 6.14 malicious pages per domain.

Does EVILSEED sustain its production of malicious URLs
over time? Figure 3 shows the number of malicious pages
found by EVILSEED each day over a period of 25 days. We
observe that the number of detections per day is consistent
over time.
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Figure 3. EVILSEED detections over time.

B. SEO Gadget

As we have seen, the SEO gadget performed poorly during
our initial experiment. This is because its seed, comprising
the malicious URLs found by the crawler during that time,
did not contain URLs belonging to a live SEO campaign. We
speculate that this may be due to a change in the Twitter API
that occurred during our experiment, which may have reduced
the maliciousness of seeds based on Twitter trending topics.

To better evaluate the SEO gadget, we ran a successive
experiment, in which we fetched hourly the top trends for
Twitter and Google Hot Trends, searched for them on Google,



and analyzed the results with our cloaking detection heuristic
(Section III-C). Out of the 110,894 URLs that we collected,
248 were detected to be cloaking (at the domain level, 46
out of 54,944). We then seeded the SEO gadget with these
cloaking URLs. The results of this experiment are shown in
Table III. Note that, to use the oracle’s resources efficiently, the
SEO gadget submits only one URL per each distinct domain.

The high detection rate on these URLs indicates that our
cloaking detection technique is effective and that redirection-
based cloaking provides a strong indication that a website is
malicious. Note that the toxicity does not take into account the
number of visited pages, since the most expensive operation
in our system is the oracle analysis. When taking those into
account, the ratio of the malicious pages found over the visited
pages is 0.93%, which is two orders of magnitude higher than
the crawler (0.019%).

Expansion Total Cloaked Cloaked %

URLs:
Links 537,729 158,536 29.5%
Site Query 134,364 105,443 78.5%
Term Query 525,172 141,765 27.2%

Total 1,219,090 319,949 26.2%

Domains:
Links 52,053 10,028 19.2%
Site Query 10,304 7,970 77.3%
Term Query 177,542 15,230 8.6%

Total 239,899 33,228 13.8%
Table IV

CLOAKING DETECTION RESULTS

Table IV provides the results of cloaking detection on all
the URLs tested by the SEO gadget. Overall, 26.2% of the
URLs tested were in fact cloaked, and 7.3% of the domains
tested hosted at least one cloaked URL. The percentage is
lower for domains because, as we observed in Section III-C,
each domain in a blackhat SEO campaign hosts large numbers
of pages optimized for different search terms.

The tables also show the performance of the various
expansion strategies used by the SEO gadget. Only 4% of
the total URLs were produced by more than one of the three
expansion strategies. Site queries, where we search for other
websites hosted on the same domain as a seed URL, had the
best performance, with 77.3% cloaked URLs. However, such
queries clearly cannot expand to previously unknown malicious
domains. The remaining strategies have similar performance
at around 30% cloaked URLs, but the term queries strategy
provides larger numbers of distinct domains. For comparison,
the last row shows the cloaking detection results on URLs
obtained by querying for Google and Twitter trends topics:
Only 0.2% of the tested URLs were cloaked.

C. Content Dorks Gadget

We found that the most influential factor for the success
of a content dorks gadget is n, the length of the n-gram. In
particular, we found that the toxicity for the results of queries

ranged from 1.21% for 2-grams to 5.83% for 5-grams. In
hindsight, this is not too surprising. The reason is that smaller
n-grams are typically found on a larger number of pages.
Thus, when we assume that a malware distribution campaign
has compromised a certain number of pages, shorter n-grams
means that more pages will compete for the top spots in the
search engine rankings.

Although longer n-grams are typically better, it is interesting
to observe that the first ten most-successful dorks in term of
toxicity were five 2-grams and five 3-grams, with the first
two positions taken by “Centralized Admission Policy” and
“calendar about pregnancy.” The former trigram led to the
discovery of many compromised pages hosted at a Pakistani
university. The latter trigram can be found in the payload of a
large injection campaign, with more than 750 compromised
domains still listed on Bing at the time of writing, including
about.com (65th in the Alexa top domains) and several
.edu domains. The injected page is used for search engine
optimization; it contains thousands of terms that are likely
to be ranked highly in search engines. When visited, the
page redirects to a malicious URL. The third most successful
n-gram was “Gyj (SND) {var” with 19 malicious pages
detected. This is part of a JavaScript snippet (function
Gyj(SND){var) that is used in an injection campaign.
Google reports 304 active pages, of which about half have
been blacklisted by Google Safe Browsing.

D. Links Gadget

We have observed three main categories of sites that have
been used by the Links Gadget to locate malicious content.

The first one is unmaintained web sites. As an example, the
URL http://www.irkutsk.org/cgiapps/guestbook/guestbook.html
leads to a guestbook that has been active for almost ten years.
This guestbook contains 286 spam comments, 12 of which
have been found malicious by our oracles.

The second category is domains that publish black-
lists of malicious domains (e.g., http://www.mwis.ru and
http://urlquery.net). The advantage here is that this gadget
can automatically discover and parse these sources.

The last category is domains that list some additional
information about a domain. For example, http://calimartec.info
lists, for a given domain, the domains that are co-located on
the same IP, the domain hosted in the same subnet, and the
domains that have a similar spelling.

E. Domain Registrations Gadget

Starting from the 13th of November 2010, we collected a
year’s worth of domain registrations for the top-level domains
.COM., .NET., .ORG., .INFO. and .US (a total of 16, 663, 616
domains). During this time period, the Domain Registrations
Gadget identified malicious URLs on 10, 435 domains using
1, 002 domains as seeds. We can now revisit our hypothesis
that malicious domains are registered close in time to each
other. Let us now consider the probability P that, given that we



Seeds Visited Cloaked Analyzed Malicious Toxicity Malicious
Visited Expansion

URLs 248 1,219,090 319,949 12,063 11,384 94.37% 0.93% 45.90
Domains 46 177,542 15,230 9.270 8,763 94.53% 4.93% 190.5

Table III
CLOAKING DETECTION RESULTS
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Figure 4. Consecutive registrations of malicious domains.

know that a particular domain registration is malicious, at least
one of the registrations that come immediately before or after
it (in chronological order) is also malicious. Given the scarcity
of malicious domains (0.1% of the total domains), if the
events “domain is malicious” and “domain has been registered
before/after a known malicious domain” were independent,
P would be 0.19%. The empirical evidence of the collected
data, instead, shows that these events are correlated, as P is
empirically equal to 7.51% (see Figure 4). Therefore, we
can conclude that the domains that have been registered
immediately before and after a known malicious domain are
much more likely (more than 35 times more likely) to also
serve malicious content.

F. DNS Queries Gadget

To test the DNS queries gadget, an Internet Service Pro-
vider (ISP) gave us access to a DNS trace collected from its
network during 43 days in February and March 2011. The trace
contained 377,472,280 queries sent by approximately 30,000
clients to one nameserver. The trace was made available to us
only at the end of this collection period, which, unfortunately,
introduced a significant delay between the collection of data
and the time when the gadget was run.

As our seed, we considered 115 known, malicious domains
that were queried at least once in the trace. From these, our
gadget generated 4,820 candidate URLs (on 2,473 domains),
of which 171 URLs (on 62 domains) were determined to be
malicious by our oracles. Of the 115 malicious domains that
were used by our gadget, only 25 were indeed “effective,” i.e.,
led to the discovery of a malicious URL. The most effective
domain guided the gadget to locate 46 malicious URLs on 16
different servers; 21 domains led to the discovery of multiple
malicious URLs.

We speculate that the delay between recording the query
events and analyzing them with our gadget may explain why
no malicious URLs were identified for 90 of the malicious

domains queried in the trace: During this time, compromised
pages may have been cleaned up or removed from search
engine indexes. For the future, we intend to run the gadget in
parallel to the DNS data collection.

V. Discussion and Limitations

Security analysis. Our results have shown that EVILSEED
is effective at finding malicious content on the web starting
from an initial seed of malicious pages. However, an attacker
might try to prevent EVILSEED from finding and detecting
malicious pages. The most radical approach would be to make
sure that these pages are not indexed by search engines in the
first place. This can easily be achieved by an attacker who
has full control of an exploited website and can restrict bot
access using robots.txt. On the other hand, this approach
may not be possible for cases where the attacker is able to
inject malicious content into a page, but does not have any
additional privileges on the exploited site. A more significant
problem with this evasion approach, however, is that malicious
web sites often receive the bulk of their visitors from search
engines, so de-listing them would vastly reduce the number
of potential victims (this is particularly evident in the case of
pages of SEO campaigns).

Attackers could also try to perform evasion attacks against
the detection techniques employed by our oracle (Wepawet, our
custom fake AV page detector, and the Safe Browsing system).
This problem is orthogonal to the techniques presented in
this paper. In addition, our tool can be combined with any
other oracle for the detection of malicious web pages, thus
increasing the difficulty of evasion attempts.
Seed quality. The effectiveness of our gadgets is dependent
on the quality and diversity of the malicious seed that they
use as input. In the worst case, if the seed completely lacked
a particular class of malicious pages, our gadgets would not
be able to automatically generate search queries leading to
such pages. To minimize this risk, we rely on a collection of
malicious pages that is as large as possible, and we refresh it
frequently. We can obtain input pages from external sources,
such as Wepawet and public repositories of web malware,
e.g., the malwaredomainlist.com forum, which are constantly
updated. Wepawet currently flags several thousand new pages
per month, and the malwaredomainlist.com database has
increased by about 500–4,000 entries every month since 2010.
Results over time. To be useful in practice, EVILSEED needs
to be able to provide a constant stream of high-quality candidate
URLs, rather than exhausting its effect after one or few runs.

The number of candidate URLs identified by a single query
is limited by the maximum number of results that a search



engine will return for this query. To obtain more results, we
could borrow a technique used by cybercriminals, and refine
the queries we issue with additional keywords, to elicit different
result sets from a search engine. For instance, results from
John et al. [12] show that attackers add restrictions such as
site:.com to their dorks, for different top level domains.
Moreover, as our results from running EVILSEED in online
mode have demonstrated (see Section IV-A), even a small
number of new seeds can be expanded into a significant number
of additional, malicious pages. Thus, EVILSEED can be run
continuously alongside a traditional detection system (such
as Wepawet), discovering a significant number of additional,
malicious URLs for each new seed that Wepawet finds.
Performance/scalability. The bottleneck of EVILSEED is
the cost of performing in-depth analysis with an oracle. For
example, Wepawet can process only about 100K URLs per day
(one URL takes about one minute). Currently, EVILSEED runs
on two ordinary servers: one runs the crawler, the other the
gadgets. Each search engine query returns tens of results, and
one machine can easily perform 10K searches per day without
getting rate-limited. This allows us to gather 100K URLs per
search engine. A single web crawling host can retrieve millions
of pages. This underlines the critical importance of feeding
the oracle (bottleneck) with pages of high toxicity.
Deployment. Search engines could deploy EVILSEED. This
might diminish its effectiveness. However, it also mean that
the vectors that EVILSEED targets were mitigated; we consider
this a success. Moreover, researchers with limited resources
can still deploy EVILSEED, harnessing search engines that
filter results more naively. A good candidate for this is Yacy,
which is a distributed crawling effort that strives to build a
search engine with no filters. Also, search engines might be
interested in offering to researchers an access to unfiltered
results.

So far, we have presented EVILSEED from the point of
view of these researchers, because we belong to this group
ourselves: in fact, EVILSEED was born as a solution to the
problems we were facing in collecting malware samples.
However, we believe that EVILSEED can be beneficial also to
search engines. EVILSEED “guided search” will not provide
search engines any performance gain in the crawling phase, as
they would still incur in the full crawling cost to build their
index: in fact, they provide the crawling infrastructure that the
small players deploying EVILSEED opportunistically leverage.
Instead, EVILSEED’s main contribution in the eye of search
engines are the new features we propose: by adding them to
their prefilters, search engines can select URLs candidates
that need in-depth analysis more timely, keeping more of their
users safe from malware. Also, a page selected by EVILSEED
is more likely to be malicious, thus improving the prefilter
efficiency. This is because the features identified by EVILSEED
and the prefilter are considering different aspects: EVILSEED
looks at the “neighborhood” of the candidate page, while the
prefilter looks at particular features of the page (e.g., javascript

obfuscation). Many details about the search engines’ filtering
techniques are confidential, so we cannot provide conclusive
proof that these features are not already in use. However,
we have observed several cases that indicate otherwise. For
example, from January to November 2011 we have observed
a large-scale injection campaign on legitimate web sites that
was distributing malware: to this date, it can be still be found
querying Google and Bing for “calendar about pregnancy”.
This n-gram has been generated by our EVILSEED deployment
in January, when our crawler randomly visited a URL that
has been infected. Over the next ten months, both Bing and
Google have been slowly blacklisting more and more results
of this query, until the campaign was eventually shut down.
This incremental blacklisting is indicative that search engines
do not implement EVILSEED: otherwise, upon marking one
of the infected URLs as malicious, all the remaining URLs
would be quickly sent to in-depth analysis, and blacklisted.
Evasion. Cybercriminals could try to detect our visits. To
mitigate this, visits from crawler and gadgets come from a
“fresh” browser (no history and previous state). Cybercriminals
could still track our system’s IPs: using a large, dynamic pool of
IPs mitigates this problem. It is improbable that cybercriminals
specializing in SEO campaigns and injections will try to evade
EVILSEED by diminishing their footprint in search engines,
because this will reflect negatively in the traffic on their sites,
and ultimately in their income.
Gadget selection. A final question that we address is whether
there are particular limitations on the gadgets that can
be employed in our system. As we have seen, the only
requirements on gadgets are that they are capable of identifying
similarities among the pages of the evil seed, and of querying
search engines for pages with the same properties. We have
presented the implementation of a diverse set of gadgets, based
on the analysis of the textual content of web pages, on their
linking relationship, and on their behavior (cloaking). In our
experience, it was also easy to extend the existing system by
“plugging in” an additional gadget.

VI. Related Work

Finding malicious content on the web is a process that
requires two main components: a detection procedure (or
oracle), which, given a web page, decides whether or not it
is malicious, and a searching procedure, which locates web
pages to submit to the oracle.
Oracles. The problem of designing effective oracles for
the detection of malicious web pages (mostly pages that
perform drive-by download attacks [2], but also fake anti-
virus pages [4] and Flash-based malicious advertisements [33])
has received considerable attention. Two main approaches have
been proposed: (i) using high-interaction honeyclients to detect
unexpected changes in the underlying system (e.g., new files
or running processes) indicating a successful compromise [2],
[9], [10], [34], [35]; and (ii) using low-interaction honeyclients
or regular browsers instrumented with specialized, light-



weight detectors [6]–[8], [36]–[41]. Additional efforts have
focused on preventing unconsented content execution, which
is the ultimate goal of drive-by download attacks [42], and
on identifying the common pieces of infrastructure (central
servers in malware distribution networks) employed by large
numbers of attacks [43]. In this work, we use Wepawet [6] (a
low-interaction honeyclient) and the Google Safe Browsing
blacklist [2] (a blacklist produced using high-interaction
honeyclients) as our oracle. We use these tools as black boxes,
and, therefore, it would be possible to use in EVILSEED any
other available tool that is able to provide an evaluation of the
malicious nature of a web page. Since honeyclients require
a significant amount of resources to analyze a web page, a
prefiltering step is often applied to a candidate page, so that
likely-benign pages are quickly discarded [2], [21], [22], [44].

Our work is orthogonal to prefilters: We are not concerned
with filtering out from a pre-existing dataset “uninteresting
pages,” as prefilters do. Instead, we describe ways to effectively
build datasets that are more likely to contain “interesting” (i.e.,
malicious) web pages.
Searching for candidate pages. The second component of a
system that detects malicious web content is one that gathers
the web pages that are passed to the oracle. Previous work
has focused on web crawling, identifying common features
of malicious pages, and monitoring and learning from the
attackers’ behavior. Hereinafter, we discuss each of these areas.

Traditionally, researchers have relied on large web crawls to
collect web pages [2], [17]. These large crawls are effective,
because they provide a “complete” view of the web: Provos
et al. report a 5% detection rate, after a prefiltering step in
which billions of pages are quickly discarded. The downside
is that these massive crawls require an extensive infrastructure,
which is available only to a few organizations.

Alternatively, web crawls can be guided to favor the visit
of parts of the web that, according to a number of heuristics,
are more likely to contain malicious content [21], [35]. These
smaller, targeted crawls are feasible also for smaller players,
since they do not require building and maintaining a large
infrastructure. However, they yield lower detection rates. For
example, Moshchuk et al. report a 0.4% detection rate [35].

Our approach hits a sweet spot between these two crawling
alternatives. In fact, EVILSEED does not require the extensive
infrastructure used for large crawls (the entire system runs
on one off-the-shelf server-class machine). Instead, it mines
malicious samples to generate search engine queries that point
to URLs with high toxicity, thereby leveraging the work that
search engines have already performed.

An alternative technique to searching for malicious content
is based on the observation that malicious resources are often
similar to each other, for example, because they are created
using the same attack toolkits. Previous efforts have focused
specifically on domain names, and have identified a number
of features that are characteristics of the malicious domains
controlled by cybercriminals. These characteristics can be

used to identify additional (previously uncategorized) domains
that are likely to be malicious [5], [45]–[47]. One important
difference to our approach is that we want to identify legitimate
but compromised pages, rather than domains that are directly
under control of the cybercriminals. In this context, the involved
domain names are not decided by the cybercriminals.

A final approach to identifying potentially malicious sites
consists of replicating the techniques cybercriminals use to
search for vulnerable web sites. The insight, in this case, is that
vulnerable web sites that are searched for by cybercriminals
are likely to get compromised and become malicious [11],
[12], [14]. We approach the problem from a different angle.
Instead of identifying actual (manually-crafted) queries from
existing search engine logs, we analyze known, malicious
pages to automatically extract the searches that can be used
to discover both compromised landing pages and malware
distribution sites.

VII. Conclusions

As malicious activity on the web continues to increase, it is
critical to improve the defenses at our disposal. An important
component of our defense is the ability to identify as many
malicious web pages on the Internet as possible. This is a
daunting task that requires a substantial amount of resources.

In this paper, we propose a novel approach whose goal is to
improve the effectiveness of the search process for malicious
web pages. We leverage a seed of known, malicious web
pages and extract characterizing similarities that these pages
share. Then, we use the infrastructure of search engines and
the data that they have collected to quickly identify other
pages that show the same characteristics and, thus, are also
likely malicious. We have implemented this approach in a tool,
called EVILSEED, and validated it on large-scale datasets. Our
results show that EVILSEED can retrieve a set of candidate
web pages that contains a much higher percentage of malicious
web pages, when compared to random crawling (and even
to results returned for manually-crafted, malicious queries).
Therefore, by using EVILSEED, it is possible to improve the
effectiveness of the malicious page discovery process.
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