
Experiences and observations from the NoAH infrastructure

Georgios Kontaxis, Iasonas Polakis, Spiros Antonatos and Evangelos P. Markatos

Institute of Computer Science

Foundation for Research and Technology Hellas

{kondax, polakis, antonat, markatos}@ics.forth.gr

Abstract—Monitoring large chunks of unused IP address
space yields interesting observations and useful results. How-
ever, the volume and diversity of the collected data makes
the extraction of information a challenging task. Additionally,
the maintenance of the monitoring infrastructure is another
demanding and time-consuming effort. To overcome these
problems, we present several visualization techniques that
enable users to observe what happens in their unused address
space over arbitrary time periods and provide the necessary
tools for administrators to monitor their infrastructure. Our
approach, which is based on open-source standard technologies,
transforms the raw information at the network level and
provides a customized and Web-accessible view. In this paper,
we present the design, implementation and early experiences
of the visualization techniques and tools deployed for the
NoAH project, a large-scale honeypot-based infrastructure.
Additionally, we provide a traffic analysis of data collected over
a six month period of our infrastructure’s operation. During
the data collection period, we observed that the number of
attackers continually increased as did the volume of traffic they
generated. Furthermore, interesting patterns for specific types
of traffic have been identified, such as the diurnal cycle of the
traffic targeting TCP port 445 (Windows Directory Services),
the port that receives the largest volume of attack traffic.

I. INTRODUCTION

During the last few years, we have been witnessing an

increasing number of cyberattacks on the Internet. Viruses,

worms, trojans, spyware and other types of malicious pro-

grams are obstructing the effective use of the Internet and

crippling the network infrastructure. We can provide endless

examples of worms and viruses that are fast and can cause

severe damage. The SQL Slammer worm was able to infect

more than 70,000 victim computers in less than 15 minutes.

During the summer of 2003, the Blaster worm managed to

infect more than 400,000 computers. In 2001, more than

4,000 Denial-of-Service (DoS) attacks were launched on

the Internet every week [1], often attracting the interest of

popular media. Although the problem of Denial-of-Service

attacks was already widely known, the magnitude of the

problem had been largely underestimated. It is difficult to

measure the damage caused by viruses and worms, however

some estimates put the cost in the order of billions of dollars

[2]. However, this damage may actually be small compared

to what these attacks can potentially do, as illustrated in a

study on so-called Warhol worms [3]. Such worms can cause

massive damage of unprecedented effect causing severe

disruption to the Internet infrastructure and services.

Although tools and systems that can help us protect

our infrastructure from cyber-attacks exist, these tools are

usually limited to protecting against known forms of attacks.

Antivirus systems can protect users against known viruses,

but are usually helpless when confronted with a new virus

instance. Similarly, Intrusion Detection Systems can gener-

ate alerts for known forms of worms but are of little help

when confronted with a previously unknown attack. Thus,

we need a security infrastructure that is able to detect new

forms of attacks, and has the critical mass to detect them as

early as possible. This will allow scientists and engineers to

study, analyze and rapidly develop the appropriate defenses.

The NoAH project is a scalable and extensible architecture

based on the use of a distributed system of cooperating hon-

eypots. Honeypots are non-production systems that monitor

unused resources, such as unused IP address space. By de-

fault, honeypots should not receive any kind of activity and,

thus, any communication from a host is flagged as suspicious

and must be examined. The importance of honeypots lies

in the fact that they can detect novel attacks without any

false positives, unlike traditional defense mechanisms such

as network intrusion and prevention systems. The NoAH

infrastructure has been deployed for over a year and covers

close to ten thousand unused IP addresses.

In this paper we present the statistics gathered by the

NoAH infrastructure and the visualization techniques used

for the data representation. We have implemented and

deployed several web-based interfaces to display statistics

of the collected traffic, perform queries over the data and

monitor the status of deployed components. Furthermore,

we provide results from the traffic analysis performed on the

data collected from one of our largest sensors. We present a

case study for port 445, the most attacked TCP port. While

the aggregated traffic does not present a specific pattern,

traffic on that port presents an interesting diurnal pattern.

The paper is structured as follows. Section II describes the

related work while Section III presents the NoAH infrastruc-

ture. The deployed visualization techniques are described in

Section IV. Traffic analysis over gathered data from one

NoAH sensor is presented in Section V. In Section VI we

explore future directions in extending our infrastructure and

conclude in Section VII.



II. RELATED WORK

Collapsar [4] proposes a decentralized architecture com-

posed of a large number of honeypots deployed in different

network domains. This approach tries to address the problem

that centralized honeypot farms have limited view of Internet

activity. The core idea of Collapsar is to deploy traffic

redirectors in multiple network domains and examine the

redirected traffic in a centralized farm of honeypots.

Leurre.com [5] is a distributed honeypot environment that

operates a broad network of honeypots covering around

30 countries. Honeypots run a modified version of honeyd

and emulate three different operating systems; two from

the Windows family (98 and NT server) and Redhat 7.3.

Traffic and security logs are retrieved daily and stored

into a centralized database. Apart from logs, raw traffic is

also analyzed, mainly to derive information about attackers

and specifically IP geographical location, DNS names, OS

fingerprinting and TCP stream analysis. As honeyd emulates

three operating systems, each platform needs 3 dark IP

addresses to listen to. These IP addresses are consecutive

and each emulated OS is assigned to listen to one of them.

The reason for listening to consecutive IP addresses is to

identify attackers that scan subnets.

A honeynet is an architecture proposal for deploying

honeypots. Deployed honeypots can be both low and high-

interaction honeypots but honeynet architecture discusses

mainly about high-interaction ones. According to the Hon-

eynet Project [6] architecture, honeypots live in a private

subnet and have no direct connectivity with the rest of the

Internet. Their communication is controlled by a centralized

component, actually the core of the architecture, called hon-

eywall. Honeywall performs three operations: data capture,

data collection and data analysis. Data capture mechanism

monitors all traffic to and from the honeypots. The challenge

here is that a large portion of the traffic is over encrypted

channels (SSH, SSL, etc.). To overcome this problem, Sebek

[7] was introduced to the honeynet architecture. Sebek is

a hidden kernel module that captures all host activity and

sends this activity to the honeywall. As Sebek runs in the

host level, it can capture traffic after being decrypted. The

data control mechanism tries to mitigate the risk of infected

honeypots. As honeypots will eventually be compromised,

they can be used for attacking other non-honeypot systems.

Data control can be performed in many ways; limiting the

number of outbound connections, removing attack vectors

from outgoing traffic or limiting the bandwidth.

Several tools have been implemented to visualize security-

related data. Pkviz [8] is a packet animation visualizer. It

accepts tcpdump files and replays the trace by plotting, using

two-dimensional space, each byte in a packet from left-

to-right (x axis) from the first byte to the last. The value

of the y axis depends on the actual value of the byte (0-

255). The rapid successive representation of packets in a

Figure 1: The design of the NoAH infrastructure. Note that
Honey@home and static sensors may be co-located on the same
physical machine.

trace produces an animation describing the network traffic.

Circos [9] is designed to visualize two-dimensional tabular

data. A circle, split in two arches, is used to depict the

attributes of the dataset e.g. honeypot sensor and attacking

country. Color ribbons between two arches relate to the

strength of the relationship (here: a lot of attacks from one

country to a specific honeypot). The thicker the ribbon,

the more prominent the relationship. CAIDA’s Cuttlefish

[10] produces animated images that reveal the correlation

between the diurnal and geographical patterns of displayed

data. Besides drawing an absolute value for the data (e.g.

volume) on the map, it illustrates the sun’s movement over

the globe, therefore defining any given moment using time,

place and data value. This is suitable for pointing out

patterns between local time and the visualized events.

III. THE NOAH INFRASTRUCTURE

In this section we outline the three basic components

of our infrastructure; a distributed network of sensors, a

combination of high and low-interaction honeypots and a

web-based front-end. Figure 1 presents this design.

Distributed Sensor Network. The first basic component

are the sensors. They are the ”eyes and ears” of the ar-

chitecture as they own the unused IP address space and

forward traffic to the honeypots for further analysis and

attack detection. In the NoAH architecture two types of

sensors exist; static and Honey@home (dynamic) sensors.

Static Sensors. They are physical machines which monitor

large portions of unused IP address space (usually more than

256 addresses) and run specialized software to capture and

store traffic going to that space. Static sensors are usually

hosted by organizations and institutions. They present a low



demand for maintenance as they only have to be monitored

for their uptime; as they do not run any other service except

packet capturing and forwarding, their risk for infection

is minimal. Each sensor runs its own web interface for

displaying the statistics it has gathered. We will refer to

these statistics in more detail in the next Section.

Honey@home Sensors. We implement dynamic sensors

with the use of Honey@home. Honey@home is designed

for monitoring unused address space from users that are

not familiar with honeypot technologies or are not able to

maintain a fully-fledged sensor. It runs in the background

of any personal computer for both Unix-like and Windows

operating systems. By default, it creates a pseudo-interface

in the user’s machine and requests an extra IP address from

the local DHCP server. All the traffic going to that extra IP

address is forwarded to the central farm of honeypots. In

the absence of a DHCP server or in the case where the user

is behind NAT, the tool reverts to unused port monitoring.

That is, it captures and forwards traffic going to specific

ports not bound by the user, for example, ports usually

bound by a database server or a Web server. All clients

are connected to a front-end server that authenticates them,

monitors their availability and stores statistics about the

forwarded traffic. As Honey@home is run by home users,

it is expected that each client will present low availability.

What is more important is to monitor the availability and

normal operation of the front-end server. In regards to the

users’ privacy, no user traffic is at any moment monitored,

captured or stored by Honey@home. Furthermore, there is

the option to communicate with the core over Tor [11] so

that users forwarding traffic to the farm of honeypots cannot

be identified and possibly attacked by malicious parties.

Honeypots. We employ the Amun [12] low-interaction

honeypot to simulate the most common service vulnera-

bilities. Traffic, forwarded from the sensors, is directed to

the appropriate service and, if it contains malicious data,

the respective vulnerability will be triggered and the attack

will be recorded for further analysis. Amun simulates a

finite set of known vulnerabilities. To expand its capabilities,

more vulnerability modules have to be written. To detect

previously unknown attacks, we employ the Argos [13]

high-interaction honeypot and its memory tainting mecha-

nism. However, as high-interaction honeypots are heavily

instrumented machines, their processing power and memory

overhead is high. The availability of honeypots is a critical

issue; their uptime must be 100% so as not to miss any

attacks.

Web-based Front-end. The last basic component is the

central website that displays aggregated statistics from all

static sensors and Honey@home clients. Additionally, it

monitors and visualizes the availability and normal operation

of both honeypots. It is basically the single point where

NoAH administrators can see if the infrastructure is work-

ing as intended, which sensors are working or not, which

Figure 2: The top 10 source IP addresses and destination ports as
monitored by a NoAH sensor for one day

Honey@home clients are connected and the statistics about

the traffic monitored by the sensors at various timescales.

In the next Section, we will present all the deployed

techniques for representing the attack traffic received by the

NoAH sensors as well as the monitoring tools that check

the availability and normal operation of the infrastructure.

IV. STATISTICS AND VISUALIZATION

The NoAH infrastructure so far includes ten static sensors

and dozens of Honey@home clients, monitoring more than

nine thousand unused IP addresses. The static sensors are

geographically distributed and monitor unused addresses

from diverse environments; from universities and institutions

to ISPs and medical centers. On average, the high-interaction

honeypots process around half a million packets per day.

Manual inspection of such a large volume of traffic is

practically impossible and, thus, automatic mechanisms that

display statistics and trends about received traffic are needed.

We present the types of statistics gathered by each sensor

and how they are visualized.

A. Statistics

Each sensor runs three software components. The first one

is a minimal daemon based on the pcap library [14] that

listens to an interface and captures packets going to a given

unused IP address space. Specific pieces of information of

the captured packets are stored in a local Postgres database

(the second software component). This information includes

the packet protocol, source and destination IP addresses,

source and destination ports, flags in the case of a TCP

packet and finally the timestamp of when the packet was

captured. The last component is a set of PHP files that

retrieve and render statistics on the collected attack traffic:

Top source IP addresses. By default the top 10 source

IP addresses that sent the most packets during the last

2 hours is displayed. For each IP address the number of

packets it sent and its geographic location are also displayed.



Figure 3: The geographical distribution of attackers as monitored
by a NoAH sensor for one day

The geographic location is retrieved by a local MaxMind1

database. Additionally, each IP address is clickable. By

clicking it, users are redirected to a webpage that displays

all packets sent by that IP address for a configurable time

period. Users are able to select the time period which varies

from two hours up to the last month.

Top destination ports. The top destination ports targeted

by attackers are displayed. For each port the number of

packets and a trend indication are also shown. The trend

indication represents whether the sensor received more or

less packets at that port in comparison to the previous time

period. Again, the user can configure the time period up to

the last month. By clicking a port, a webpage containing all

traffic sent to that port is presented. A screenshot that shows

the top ten source IP addresses and destination ports for one

day can be seen in Figure 2.

Attack map. This page includes two global maps. The

first map displays the geographic distribution of distinct

source IP addresses. Each country is colored based on how

many IP addresses are hosted in that country. Countries

that host no attackers are colored as white, low activity

countries are colored as green while countries that host lots

of attacking IP addresses are red. The second map looks

like the first one but is based on the number of packets

sent by each country. The scale of both maps is calculated

dynamically based on the traffic volume. Maps are generated

on demand. A map with the number of attackers as seen by

a NoAH sensor during one day is shown in Figure 3.

Attack graphs. This page includes three graphs. The first

one is a breakdown of the TCP ports while the second one is

a breakdown of UDP ports for the last two hours. The third

one is a breakdown of traffic in terms of how much TCP,

UDP and ICMP traffic was received during the last day.

Backscatter traffic. Each sensor receives unsolicited

backscatter traffic, i.e. traffic sent from a host in response

to attacks that had a spoofed source IP address. It is trivial

to identify such traffic by inspecting the TCP flags of each

1http://www.maxmind.com/app/geolitecity

Figure 4: Screenshot from TrGeo, a Flash application that displays
the geographic origin of attackers

packet. A plot for the number of backscatter packets received

during the last week is displayed on a separate page.

B. Attack Traffic Visualization

TrGeo. In an effort to present an overview of what traffic

our honeypots capture daily, we have implemented TrGeo.

TrGeo is a platform for geographic visualization of packets

captured by the NoAH infrastructure. The basic concept

behind TrGeo is to track locations of the attackers and

display the traffic volume they send on the global map.

For the purposes of this work, we have implemented TrGeo

as an Adobe Flash application that renders desired data on

top of Google maps. On each source location a balloon is

drawn that represents how much traffic the location sent in

terms of packets. As time passes, the radius of the balloons

changes according to the volume of traffic received by

the location they represent. In fact, TrGeo implements the

visualization of a sliding time window. For example, if the

sensor has not observed packets from a location for a long

time period, the balloon for that location will have its counter

and size decreased. The information about packet volume

and geographical origin is extracted from queries submitted

to our database. Aggregation is done at the level of countries.

A screenshot of TrGeo is shown in Figure 4.

Parallel-coordinate Graphs. During the design and im-

plementation of the maps and graphs from above, we

constantly found ourselves limited by the two-dimension

barrier. Therefore, we seeked new ways of visualization

and decided to employ a tool capable of plotting data in

parallel coordinates, called Picviz [15]. To depict the n-

dimensional space of network traffic (source/destination IP

address/port, time, payload size, etc), “n” parallel equally-

spaced vertical lines are drawn and a point in that space i.e.

an event, such as a network packet arriving, is represented



Figure 5: Screenshot from PicViz, visualizing the activity of the
top 10 attackers for one hour in one of the NoAH sensors

Figure 6: Location and monitoring of NoAH sensors

as a polyline with vertices on the parallel axes where the

position on the i-th axis corresponds to the i-th coordinate

of the point. Traditional techniques search for abnormal

patterns using signatures or behavioral analysis. The Picviz

approach is excellent for analyzing multivariate data of logs

and traces since anomalies simply stand-out. Picviz uses an

intermediate language to define the different axes and types

of data represented. Our experience with Picviz involved

feeding it with network traffic datasets coming from our

honeypots. Figure 5 presents an example where we used the

tool to reveal the pattern of activity for the top 10 attackers

during a one hour period for one of our sensors. The first axis

is the timestamp of the activities. The second axis represents

the source IP addresses. These hosts were attacked from

several source ports (third axis) that targeted the full range

of destination addresses (fourth axis) and a wide range of

destination ports (last axis).

C. Infrastructure Monitoring

Static sensor monitoring. To monitor the availability of

NoAH sensors, a web page that shows the sensors drawn on

Figure 7: Uptime graphs for Honey@home clients

a Google map was constructed. A screenshot can be seen in

Figure 6. Each NoAH logo represents a sensor. On the left of

the map, a list of the sensors is displayed. Next to the name

of each sensor there is a status icon. A green tick means

that the sensor is up and displays statistics. A red x mark

icon means that the server is either down or not accessible.

The status of each sensor is inspected in the background

by an external script. Furthermore, the script is linked to an

alerting module that automatically sends a notification e-mail

when a sensor is down for more than 2 hours. All sensor

monitoring pages are password protected and accessible by

few IP addresses over SSL. This security measure ensures

confidentiality for sensor owners.

Honey@home monitoring. A deployment challenge is

the efficient and scalable monitoring of Honey@home

clients. Honey@home clients are designed to send a heart-

beat pulse to the NoAH core every minute as an indication

of their uptime status. Using the heartbeat information,

we know which clients are currently online and how long

they have been. We reconstruct the heartbeat information

as SNMP-like graphs which are published in a private web

page. Figure 7 is a screenshot of the uptime graphs. We

have two parameters to customize the displayed graphs. The

first one is the monitoring period. Changing this period, we

can see which clients were active for at least one minute

in a time period ranging up to one year. The second one is

the availability threshold. By default this threshold is 0%,

meaning that clients that send at least one heartbeat are

displayed. Setting this threshold to 100% only the clients

that were up for the whole monitoring period are displayed.

The graphs are comprised of two parts. The first one is the

client’s key. As the monitoring page is available only to

NoAH administrators, there is no need to anonymize the

client keys. Clicking on the client key the user is redirected

to a page that displays traffic statistics for the specific client.

Additionally to these statistics, the attack conversations and

malware instances captured by the client are displayed.

The second part is the SNMP-like graph that displays the

availability of the client as defined by the two parameters

described before. The graph is also clickable, redirecting

the user to a page containing the availability graphs for all



Date

C
o

n
v
e

rs
a

ti
o

n
s

1000

10000

100000
200000
400000

MAY10 JUN10 JUL10
25 02 09 16 23 30 06 13 20 27 04 11

Figure 8: Conversations with attackers.

Country # Conversations

Russia 1,459,733
Taiwan 351,527
USA 336,098
Spain 191,313
Japan 89,838

Puerto Rico 85,980
Norway 77,949
China 66,533
France 55,551
Turkey 51,780

Table I: Top 10 source countries of attackers that targeted NoAH

monitoring periods. In that way, we can observe the behavior

of the client for different time periods.

V. TRAFFIC ANALYSIS

Here we provide an overview of the statistics collected by

the NoAH infrastructure during a three month period.

A. Attack statistics

The distribution of the conversations handled by the

NoAH honeypots is shown in Figure 8. With the term

conversations, we refer to connections that were established

with the honeypots and sent application data that could be

characterized as exploitation attempts. During a 3 month de-

ployment period, from the middle of April to the beginning

of July 2010, the infrastructure handled a total of 3,385,518

conversations with attackers that targeted the NoAH sensors.

The maximum number of conversations handled in one day

was 377,071 which occurred on the 9th of July.

Table I presents the top 10 source countries of attackers

that initiated conversations with the NoAH sensors. The

aggregated conversations from these 10 countries amount to

81.7% of the total conversations handled by our honeypots.

Results show that Russia is the country that initiated the

largest number of attacks against the NoAH sensors reaching

almost 1.5 million attacks. Taiwan and USA follow with

over 300 hundred thousand attacks. China ranks 8th which

is much lower than expected and quite surprising.

IP Address # Conversations Country Days

xx.xx.222.18 103,692 Russia 2
xx.xx.10.241 85,564 Russia 1
xx.xx.95.27 78,084 Taiwan 1
xx.xx.35.24 76,506 Norway 5
xx.xx.63.50 62,962 Japan 1
xx.xx.209.3 61,178 USA 4
xx.xx.136.78 55,353 France 2
xx.xx.153.35 53,601 Puerto Rico 1
xx.xx.58.93 51,969 Russia 2
xx.xx.86.28 50,169 Russia 2

Table II: Top 10 attackers that targeted the NoAH sensors.

In Table II we can see the statistics of the top attackers for

the whole duration of the three month deployment period.

It is interesting to note that all top attackers were active

for only a few days, and almost always those days were

consecutive. Port 445 was the most targeted port receiving

over 3 million conversations initiated by attackers. The

second most popular port is port 139 which attracted over 60

thousand conversations. We can identify another interesting

port. Our infrastructure collected over 40 thousand attacks

targeting port 2967 and exploiting a vulnerability in the

Symantec anti-virus client.

B. A case study for TCP port 445: Diurnal Patterns in the

Attack Traffic

Over the last year, we noticed an increase of almost two

orders of magnitude in the suspicious inbound traffic aimed

at TCP port 445 and captured by our honeypots. This port

is reserved by the Microsoft Windows file sharing service.

As we began to further investigate the characteristics of

the attack, we discovered that it followed a very distinctive

diurnal pattern. Traffic volume increased during the morning,

peaked at noon and adopted a descending rate towards the

afternoon. This pattern osculated with human behavior and

business hours. A straightforward explanation for this is that

people turn on their computers in the morning, when they go

to work, and turn them off late in the afternoon, when they

go home, and some a little later at night, when they go to

sleep. Therefore, if those computers are infected with some

form of malware trying to spread or launch attacks as part

of a botnet, they have a very specific power cycle during

which they have to perform their evil deeds. Especially

in business environments where the network and computer

configuration, both hardware and software is characterized

by homogeneity, a malware-hosting vulnerability usually

means a very high infection rate among the population. As

a result, there are groups of infected computers all working

the same hours and exhibiting the same behavior.

Figure 9 depicts the incoming traffic volume for port TCP

445 during the timeframe of a week. It makes a separation

between the volume of incoming packets and incoming

unique source IP addresses. It is clearly shown that there

is a direct correlation between the two. To further clarify



Timeframe

Thu 10:00 Fri 10:00 Sat 10:00 Sun 10:00 Mon 10:00 Tue 10:00

N
u
m

b
e
r 

o
f 
O

c
c
u
re

n
c
e
s

0

5000

10000

15000

20000
packets

attackers

Figure 9: Incoming traffic to TCP port 445 in terms of packets and
unique source IP addresses. Both metrics follow a diurnal cycle.

Timeframe

Tue Wed Thu Fri Sat Sun

N
u

m
b

e
r 

o
f 

O
c
c
u

re
n

c
e

s

0

5000

10000

15000

20000

25000

All America Europe Asia

Figure 10: Attackers on port 445 divided into three groups based
on the continent they reside. Each group follows a diurnal pattern.

that, we subsequently tried to discover the subnet or group

of subnets that were flooding us with the largest volume of

traffic. It turned out that there was a near even distribution of

incoming packets among all attacking subnets. Additionally,

we looked closer at the top 10 /8 attacking subnets in terms

of traffic volume and discovered that each one followed

an attack cycle with a 24 hour period, while maintaining

a difference in phase compared to the others.

Having concluded that there was no single subnet re-

sponsible for this diurnal phenomenon, but rather that it

was a combined effort, we tried to further analyze the

characteristics of the traffic and attribute incoming packets

to their respective time zones. To do that, we once again

employed MaxMind’s GeoIP tool which provided a mapping

between IP addresses and their corresponding countries.

That way, instead of plotting the entire volume against

a single, specific time zone, we produced three different

graphs, each one aligned with the dominant time zone of

America, Europe and Asia respectively. Using that method,

we indeed confirmed that attackers from different timezones

followed their own diurnal pattern instead of a uniform

one. Nevertheless, the three sine-like curves when merged

compiled the single plot we initially produced. The results

are shown in Figure 10.

Another interesting aspect that we revealed was that while

the number of attacking sources followed a steady diurnal

cycle across a week, so did the number of newcomers;

source IP addresses we had never seen before. This means

that the attacking population decreases towards nightfall, be-

cause people turn off their computers, but the next morning,

a stable portion of the attackers that wake up has never

Timeframe
FEB MAR APR MAY JUN JUL AUG

N
u

m
b

e
r 

o
f 

P
a

c
k
e

ts

0

100000

200000

300000

400000

500000

600000

Figure 11: Incoming traffic to TCP port 445 for six months time.

1 day 1 week 1 month

Port Count Port Count Port Count

445 922.393 445 7.546.987 445 21.016.775
1433 7.320 1434 78.355 1434 321.850
1434 7.270 1433 46.110 1433 141.090
80 5.425 80 36.059 135 96.215
135 3.904 135 35.818 80 90.799
1025 2.307 139 24.994 3072 71.569
1024 2.245 1024 24.853 1024 70.340
3072 2.179 3072 24.792 139 53.706
1080 1.968 53 17.529 5900 49.502
8080 1.879 137 16.631 22 44.412

Table III: Top 10 destination ports for a day, week & month period.

attacked us before. We grouped attackers in /24 subnets and

thereby eliminated more than 50% of the newcomers. This

action confirmed our hypothesis that malicious computers

powering on each day have their network addresses updated

via DHCP and for that matter appear as different sources.

However, a population of entirely new subnets, appearing

each day, remained.

C. Traffic Volume & Distribution Trends

An interesting fact is that there has been a steady 5%

increase in attack traffic since we started noticing the activity

on port TCP 445 and for a period of 6 months. Up until this

very moment there is no evidence that the increasing trend

has ceased. Figure 11 visualizes this trend. Let there be noted

that this trend also holds for the number of IP addresses and

subnets observed as well. Furthermore, there exists no single

source responsible for this increase in volume.

Regarding the distribution of traffic, it is evenly distributed

among different subnets. A very interesting fact is that

99.8% of the traffic we receive targets hosts that belong to

the first half of each subnets’ IP address range. Furthermore,

traffic is also evenly distributed amongst these IP addresses.

Additionally, the majority of ports under attack resides in

the 0 - 1023 range. Such ports are used to officially host

well-know services such as telnet, SSH, HTTP and a series

of Windows services. Of course there is some meaning to

this, considering it an optimization tactic to avoid attacking

the unmapped upper ranges of the port spectrum. Table

III displays the top 10 ports over a day, a week and a

month period. The most prevalent port is 445, followed by

ports 1434, 1433, 80, 135, 3072 and 1024. This means that



Figure 12: The new NoAH dashboard

70% of the top ports remain unchanged even in different

timeframes.

VI. FUTURE WORK

We are currently extending the NoAH infrastructure to

monitor the IPv6 address space. Additionally, our goal is

to continue installing more sensors, so as to have a broader

view of the attack landscape. Moreover, we are investigating

novel ways of data visualization. Finally, we are looking into

the use of a personalized dashboard for various networks and

organizations. That dashboard provides an aggregated view

of the security incidents inside and outside an organization’s

network. We aim to be able to answer questions such as:

“Which attacks are coming from inside a network?”, “Which

attackers are simultaneously attacking various parts of a

network or a group of networks?”. Figure 12 provides a

conceptual view of the dashboard.

VII. SUMMARY AND CONCLUDING REMARKS

NoAH is a distributed architecture that enables farms of

honeypots to cooperate. Because of the large volume of

traffic received by the NoAH infrastructure, there is need

for aggregating and visualizing the most interesting statistics

and trends. In this paper we presented several visualization

techniques that enable users to observe what happens in their

unused address space over arbitrary time periods and permits

them to find answers to questions like “What is the most

attacked port”, “Which attacker is the most aggressive?”,

“Which part of the monitored space is attacked the most?”.

All statistics are displayed through a dynamic web site that

utilizes well known packages for data visualization. Addi-

tionally, we provide the necessary tools to administrators for

monitoring the status of a honeypot infrastructure. We also

presented a preliminary traffic analysis for data collected

over a six month period. 70% of the top attacked ports

remain the same independently of the timescale chosen,

while port 445 is by far the most attacked port. Specifically

for port 445, we observed a diurnal pattern. Our geolocation

analysis revealed that attackers from different continents

all present a diurnal pattern and the composition of their

patterns still forms a diurnal cycle.

ACKNOWLEDGMENTS

This work was supported in part by the projects NoAH

and SysSec, funded in part by the European Commission,

under contract number 011923 and Grant Agreement Num-

ber 257007 respectively. We thank the anonymous reviewers

for their valuable comments. Georgios Kontaxis, Iasonas Po-

lakis and Evangelos P. Markatos are also with the University

of Crete.

REFERENCES

[1] D. Moore, G. Voelker, and S. Savage, “Inferring Inter-
net Denial-of-Service Activity,” in Proceedings of the 10

th

USENIX Security Symposium, August 2001, pp. 9–22.

[2] C. Taylor, “Attack of the world wide worms,” TIME, 2003.

[3] N. Weaver, “Warhol worms: The potential for very fast
internet plagues,” Technical Report, 2002.

[4] X. Jiang and D. Xu, “Collapsar: A VM-Based Architecture
for Network Attack Detention Center,” in Proceedings of the
13

th USENIX Security Sumposium, August 2004, pp. 15–28.

[5] “Leurre.com honeypot project,” http://www.leurrecom.org/ .

[6] “The Honeynet Project,” 2003, http://www.honeynet.org/.

[7] “Sebek homepage,” http://www.honeynet.org/tools/sebek/.

[8] “Pkviz,” http://sintixerr.wordpress.com/
pkviz-packet-visualizer-and-animator.

[9] “circos,” http://mkweb.bcgsc.ca/circos/.

[10] “Cuttlefish,” http://www.caida.org/tools/visualization/
cuttlefish/.

[11] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
Second-Generation Onion Router,” in Proceedings of the 13

th

Usenix Security Symposium, Aug. 2004.

[12] “Amun honeypot,” http://amunhoney.sourceforge.net/.

[13] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an Em-
ulator for Fingerprinting Zero-Day Attacks,” in Proceedings
of ACM SIGOPS Eurosys 2006, April 2006.

[14] S. McCanne, C. Leres, and V. Jacobson, “Libpcap,” 2006,
http://www.tcpdump.org/.

[15] “Picviz,” http://wallinfire.net/picviz/.


