Who Allocated My Memory?
Detecting Custom Memory Allocators in C Binaries

Xi Chen Asia Slowinska Herbert Bos
Vrije Universiteit Amsterdam, The Netherlands
x.chen@vu.nl{asia,herbertp@few.vu.nl

Abstract—Many reversing techniques for data structures rely In this paper, we describe a set of techniques to detect mem-
on the knowledge of memory allocation routines. Typically, they ory allocation and deallocation functions in stripped GfC+
interpose on the system’sral | oc andf r ee functions, and track binaries with high accuracy. We implemented the techniques

each chunk of memory thus allocated as a data structure. How- . tool called MemBrush and luated it | b
ever, many performance-critical applications implement their In a tool calle embrush and evaluated It on a large number

own custom memory allocators. Examples include webservers, Of custom memory allocators.
database management systems, and compilers like gcc and clang.  The main goal of MemBrush is to furnish existing reversing
As a result, current binary analysis techniques for tracking data  too|s, disassemblers and debuggers with detailed infaomat
structures fail on such binaries. about the memory management APl implemented by a CMA
We present MemBrush, a new tool to detect memory allocation ; y g€ P Y )
and deallocation functions in stripped binaries with high accu- Knowing the CMA' allocation, deallocation, and realldoat
racy. We evaluated the technique on a large number of real world routines, allows us to interpose on them and reuse the memory
applications that use custom memory allocators. As we show, we analysis techniques for general-purpose allocators iticapp
can furnish existing reversing tools with detailed information tions that ‘roll their own’. To demonstrate it. we use Mem-
about the memory management API, and as a result perform an ‘i '
analysis of the actual application specific data structures desigde Brush to. support an existing reverse tool called Howard [2].
by the programmer. Our system uses dynamic analysis and Howard is a tool to extract low-level data structures from a
detects memory allocation and deallocation routines by searching Stripped binary. Thanks to MemBrush, Howard was able to
for functions that comply with a set of generic characteristics of extract heap structures that it would otherwise not even see
allocators and deallocators. In addition, researchers have shown that knowledge of
memory allocation and deallocation routines is useful for
] ] retrofitting security in existing binaries—for instance totect
Many reversing techniques for data structures depend ggainst memory corruption [6]-[11]. Currently, these sitgu
the analysis of memory allocated on the heap [1]-[5]. TYRneasures are powerless if the application uses CMAs. Again,

ically, they interpose on the systemisalloc and free yith MemBrush these existing techniques should simply work
functions, and track each chunk of memory thus allocated ggyardless of the memory allocator.

data structure. Doing so is well and good for applications
that use the standard memory allocation and de-allocatibigh-level overview. The key observation behind MemBrush
functions, but unfortunately many larger and performancé that memory allocation functions have characteristit t
critical programs do not. Instead, they implement their owset them apart from other routines. For instancembl oc-
custom memory managers, typ|ca_||y designed for efﬁciendv_(e routine will return a heap address amdl | oc’s clients
Well-known examples of such applications include the ApacNVi” use pointers derived from that address to access memory
webserver, the PostgreSQL database management system,aﬂ‘?eso on. MemBrush checks these characteristics at runtime
gce compiler, and Dropbox. As reverse engineers do not hd@ing care to filter out routines that exhibit similar beioav
access to source, the precise memory allocation and daalldéike wrappers, iterators, etc.) as much as possible.
tion functions are not known. As a result, all techniqueg tha Like all dynamic analysis, MemBrush’s results depend on
build on the interposition of such functions fail. the code that is covered at runtime. Specifically, it will not
The problem is that they only see the allocations by tH#d CMA routines in code that never executes. This paper is
system’s general purpose allocators, but not the subdivisi Nnot about code coverage techniques. Rather, we use tess suit
these allocations into smaller fragments by the applicitio to cover as much of the application as possible. Fortunately
custom memory allocator (CMA). Unfortunately, the large@pplications that employ CMAs, typically use the allocatio
chunks that are visible to the reverse engineer serve meréhitines frequently—after all, that is why they have them in
as a pool for the more relevant allocations of the actual ddt first place. Thus, finding inputs that exercise the CMAecod
structures. Phrased differently, the large chunks thereselre is not very difficult, and MemBrush identified almost 90% of
mostly meaningless, while the smaller fragments are reusatithe CMA routines in all the applications we tested.
by various functions and system calls. Missing them makes itin summary, MemBrush is able to unearth most CMA
exceedingly difficult to observe any meaningful accessepadt routines in arbitrary (gcc-generated) binaries with a high
and detect the objects designed by the programmer. degree of precision. While it is too early to claim that the

I. INTRODUCTION



problem of CMA identification is solved, MemBrush advances Obstacks. An obstack [22] is a more generic version of
the state of the art significantly. For instance, we manageda region. It contains a stack of objects, within which an
accurately analyze the complex CMA systems used by thelividual object is freed along with everything allocatied
Nginx webserver, or the ProFTPd file server. this obstack since the creation of the object. An example
We implemented all dynamic analysis techniques usir@pplication using obstacks is the gcc compiler.
Intel's Pin dynamic binary instrumentation framework [12] Custom patterns. This category includes all allocators
Our current implementation works with x86 C/C++ binariethat implement the same API as a general-purpose memory
on Linux generated by the gcc optimising compiler, but thallocator (al | oc/free), but are tailored to the needs of a
approach is not specific to any particular OS or compiler. particular application. For example, one of the allocatmed
by Nginx falls into this category.
Il. BACKGROUND AND OBSERVATIONS Hybrid approaches. The research community has proposed

Programmers incorporate custom memory allocators infg"i0US approaches to provide e.g., high-speed allocatiuh
their applications to improve performance, and in the cdse %’;\che—level locality. For instancesaps[14] are a combination

region-based allocators — to reduce the programming burddn€gions and general-purpose allocators that extenameg
and eliminate a source of memory leaks semantics with individual object deletion.

Under the hood, CMAs use general-purpose memory allo- ) .
cation routines, such asal | oc and map, to allocate large B+ ESsential Characteristics of CMAs
buffers, and then define their own custom functions to atlbca Having looked at the different categories of CMA, we now
these buffers into smaller ones. Applications use the tiegul summarize their common features. It is important to emgieasi
blocks to store structured data items such as arrays, strugiat these features aim to capture the fundamental behavior
or C++ objects. When an application releases a block,of CMAs and not some implementation artifact of specific
CMA does not immediately return the memory to the generalariants. For instance, all of the eight CMA implementagion
purpose allocator. Instead, it may serve it on a future requéhat we analyze in Section VIII exhibit these characteristi
by the application and defer the real deallocation (foranse, As we will see in Sections I11-VI, these characteristicaniche
until the time that no more requests are to be expected frasasis for our detection algorithm. We will discuss allocati
the application). deallocation, and reallocation routines in turn. In a gener
Rather than aiming for this or that custom memory akense, we will refer to these custom functionscamalloc,
locator, the objective of MemBrush is to deteaty CMA. c_free, andc_realloc, respectively.
In Section II-A, we therefore introduce popular types of Allocation routines. c_malloc functions subdivide large
custom memory allocators. Then, in Section II-B, we list thﬁ]emory chunks obtained from a general-purpose allocator in
essential characteristics of CMAs that lay the foundation fsmall ones, and serve the small ones upon the application’s
our detection algorithm described in Sections IlI-VI. requests. We make the following basic observations about a
custom allocator’s behavior:

A. A Taxonomy of CMAs (A1) Normally, ac_malloc function returns a pointep that
Since comprehensive overviews of CMAs can be found in  references a heap memory region. As we discuss in
surveys by Wilson et al. [13] and Berger et al. [14], we limit Section Il, in some cases this rule should be relaxed.
ourselves to a summary of the approaches in this sectioe. Lik  E.g., ac_malloc does not need to literallyeturn p, but
Berger et al. [14], we distinguish the following five cateigsr it might pass it through an outgoing argument.
Per-class allocatorgalso known aslaballocators). A per- (A2) Applications usep or a pointer derived fronp, e.g.,
class allocator retains memory to contain data objects @f th (p+of f set), to write to memory. Here also, we expect
same type (or size). It implements the same API as a general- some deviations from such behavior. For instance, it

purpose memory allocatongl | oc/f r ee), i.e., it supports al- is possible that the occasional application allocates a
location and deletion of individual objects. Slab allocatare memory block that it does not use. However, this should
widely used by many Unix and Unix-like operating systems be the exception, rather than the rule. If the application
including FreeBSD [15] (“zones”) and Linux [16]. (almost) never writes to memory referenced gyythen
Regions (also known asarenas groups and zones[17], the function that returns it does not serve as an allocator.

[18]). Each object allocated by an application is assigred tA3) Unless thec_malloc function initializes memory chunks
a region, i.e., a large chunk of memory. Programmers can prior to returning them, the application should write to
only deallocate all objects from a region at once — individua these chunks before reading them.

deallocations are not possible. This limitation faciistallo- (A4) A c_malloc should not return the same object twice
cation and deallocation of memory with a low performance  until that chunk is released first with a call tocafree
overhead, at the cost of an increased memory usage. Example function.

applications using regions include Apache [19] (which refe(A5) Since we aim to exclude wrapper functions, we require
to them as “pools”), PostgreSQL [20] (which refers to them that ac_malloc not only checks and passes a pointer ob-
as “memory contexts”), and Nginx [21]. tained from another internal function, but also performs



some computations to derive the address of a newly 'nstéulrlnent:'tion Modules
. r t
allocated object. ; © cking ©orr
: : o Stack f Point
Deallocation routines.When an application frees a chunk ' anaysis | el @ tracking
of memory obtained from a_malloc routine,c_free reclaims @ binary
the chunk, so that it can be served again on future requestse inputs for
. . . . the binary
The algorithms in Section V are based on the following Allocator detection
characteristics of deallocators: Deallocator detection

(D1) CMAs keep track of which parts of memory are in use, Eaa,ililc:stzirfigaezi)c:znanaIysis
and which parts are free. They record the locations and
sizes of free blocks in some kind ohetadata which
may be a list, a tree, a bitmap or another data structure.
Thus, ac_free function accesses the metadata that is also
maintained by a_malloc function. of A3), we might occasionally observe such behavior. As we

(D2) When ac_free releases a memory region, the applicatiowill see later, we permit such exceptions as long as they are
should not access it anymore unless there is a bug (dia¢e. However, in practice, we did not come across them.
we assume bugs are rare).

(D3) When ac_free releases a memory object, camalloc I1l. A BIRD'S EYE VIEW OFMEMBRUSH
may return it on future application’s requests. . .

(D4) Since we aim to exclude wrapper and internal helper W& now discuss the CMA detection procedure. MemBrush
functions, we select the outermost function that shar&8nSists ofinstrumentationmodules anddetectionmodules
the metadata with @_malloc. The intuition is that if a (see Figure 1). The instrumentation modules;®, provide

function does use the metadata, it should be consider@#PPOrt (such as dynamic information flow tracking) for the
a part of the CMA. detection modules, while the detection modul@s(19, search

for the CMA routines. In this section, we briefly introduce th
ﬁzrious components, and in the next four sections, we axplai

~—%, CMA
routines

Fig. 1. MemBrush: high-level overview.

Reallocation routines. Finally, c_realloc functions allow
applications to modify the size of a previously allocate

memory block. To guarantee that the new block is contiguo T deht.ectlon modules in ﬁeftalLCMA , h
in memory,c_realloc may have to relocate it elsewhere. We n this paper, we search for routines that operate on

consider the following features af realloc routines: top of themmap/brk system calls or theibe library (i.e.,
(R1) Like c_malloc in AL, ¢_realloc functions return a pointer that internally callmal | oc/f r ee) to allocate large chunks of
b to a_heap memo’ry_region memory. However, we can configure MemBrush to detect the

(R2) Like deallocation functions (D1)¢_realloc functions Doug Lea allocator [?3] used by the GNU C library as well.
To do so, we would simply choose not to search for allocators
also access the metadata used hy raalloc.

(R3) As in (A2) and (A3), applications use or a pointer ba\jved i?anl rlnoi;t b;t ,\s/lolrenléronrrr]rrap/it;]rk.mt I's Pin dvnami
derived fromp to write to memory, and write to the ¢ implemente € ush using Intets yhamic

allocated memory before reading it. binary instrumentation framework [12]. Pin provides a rich

(R4) Once ac_realloc modifies the size of a buffer futureAPI to monitor context information, e.g., register or megnor

repetitions of the same request do not require any action, ntents, _on program mstructl_ons, function- and sy_steIiB.ca
The main components of Figure 1 are the following:

so also do not relocate it (idempotence).
(R5) A c_realloc preserves the contents of a memory blocke Inputs: (D@ The main input to MemBrush is a (possibly)

up to the lesser of the new and old sizes. Thus, if the strippedx86 binary (@ and its inputg2). For this paper, we

block is relocated, a realloc copies the old contents to  used existing test suites to cover as much of the application

the new location. as possible. If needed, we can also employ a code coverage
When R5 finds that a_realloc function relocates a buffer, we ~ tool for binaries like S2E [24].
additionally verify R6—R7 below: e Call stack tracking: (3 To analyze if a function’s behavior
(R6) As ac_realloc combines a_malloc and ac_free, it also is characteristic for a CMA routine, MemBrush monitors
releases a memory object, and the application should not the function and its callees. For that, it keeps track of
access it anymore (as in D2). the context in the function call stack. Our implementation

(R7) Likec_free in D3, if ac_realloc releases a memory object,  follows Slowinska et al. [2].

ac_malloc might return it on future application’s requests. e Partial reconstruction of physical stack frame: @ To
Even though the above features reflect the expected behavioranalyze CMA routines, MemBrush needs to identify stack-
of CMAs, we emphasize that MemBrush allows for occasional based procedure arguments. Like [2], our implementation
deviations. For example, it is possible that an applicatias a is based on dynamic analysis. In a nutshell, we monitor
use-after-free bug, and uses a chunk of memory even though ithow a function calculates pointers to access stack vagable
has been deallocated already, violating D2. Also, evenghou  pushed by its caller. If necessary, we can extend it with a
an application should not read uninitialized memory (a tihea  static analysis presented by ElWazeer et al. [25].



Test if fun returns Test if the app uses p Testif fun is not memory allocators. This way, it also follows a custom alloca
a heap pointer p to write to memory a wrapper that only . i X
before reading it forwards p tor calculating the locations of allocated objects. MensBru
S;Jeréssﬁﬂgt;%r;)E (&5 Semmaiiges monitors the return values of all fun.ctlons invoked at r_[mi;
MemBrush and selects the ones that return either a tracked pointer or a
Test Fhe app uses o | [Test F 2un does not allocate single constant that might indicate an error, eNgl, L.
once funretums ! | |replay 1 many fmes, and check To verify A2, MemBrush tracks all pointers derived from
if it returns different pointers . . .
the return value of each malloc candidate, and monitors if
Fig. 2. Detection ofc_malloc functions. they are used to write to memory. To assess A3, MemBrush

additionally examines if the application uses these painte

N . i ) to write to a memory location before reading it. Unless the
Additionally, to determine a first set of candidates og;,cat0r initializes the memory itself, the presence othsu
c_malloc andc_realloc routines, MemBrush monitors the o 4 hefore-writes suggests either that the candidateois n
return value of each executed function, and checks if it IS malloc function, or (if the occurrence is rare) that the
a pointer dereferencing a heap memory region. Since I jication is buggy. To deal with allocators that inittlitheir
gcc generated binaries, 32-bit return values are normally,, memory, MemBrush tags all memory locations written by
passed using theAX register, MemBrush implements thisy,e cangidate function (or its callees) with a unique idnti
policy as well. so that is able to spot the uninitialized reads later.

e Dynamic information flow tracking (DIFT): (5 As we Next, we retain from the remaining malloc candidates
shall explain later, the detection modules rely on dynamghly those functions that never return the same memory megio
information flow tracking (for data flow analysis). Ouragain until it is deallocated by @ free (A4).
tracker is an extended version lofbdf t [26]. Like most  Our approach draws on load testing. The basic idea is that
other DIFT engines [27], we propagate information ofe insert a “call loop” that repeats specific invocationsha t
direct flows only: we copy tags on data move operationgandidate functions many times. As long as we ensure that the
or them on ALU operations, and so on. We do nofpplication does not release the allocated region with la@al
propagate any information on indirect data flows, such as_free routine, we would expect a propermalloc to return
conditional statements. a stream of distinct addresses in accordance with (Al). The

e Pointer tracking: (6 MemBrush monitors how the appli- candidate progresses to the next stage if either (1) it (er on
cation uses pointers returned by thenalloc andc_realloc  Of its callees) invokes the general-purpose allocatorltxate
candidates. To this end, the pointer tracking module tracRshew memory region and returns a pointer referencing it, or
how pointers to heap memory derive from other pointer§?) it begins to return a non-pointer value consistentlgsialy
and where they are stored. Our implementation is basiglicating that the application has run out of memory and

on Slowinska et al. [2] which extends the generic DIFFannot allocate any extra. In contrast, we drop ¢healloc
module () with pointer propagation rules. candidate if (1) the application crashes, (2) the returnevas

« Detection modules: @®®@ The detection modules a pointer already seen during the load test, or (3) the return
identify the actual CMA API: ¢_malloc, c free, and value is neither a pointer nor an invariable error message.

¢_realloc. MemBrush's algorithms check for the character- The implementation relies on a partial reconstruction ef th

istic features discussed in Section 1I-B, and search for thgysical stack frame of the malloc candidate®. First, we
routines in turn. In the first ste@), MemBrush determines pause the execution ateal | instruction that transfers the
¢_malloc routines. Ther®), it tries to findc_free functions control flow to the candidate function, and we store R

that can be coupled with the already detected aIIocatiGHmeXt, of the call site. Specifically, we record the valués o
functions. In the last ste@), it identifiesc_realloc routines. the _reglsters and the stack-based arguments. In orderlayrep
Finally @, we perform an additional analysis of thethe invocation, MemBrush repeatedly resets@he_context to
detected CMA routines. the reco_rded one, restarts the ex_ecutlon atthe mstructpn,
pauses it again when the function returns, and examines the
return value. Since the replay loop might corrupt the state
of the application or cause a memory leak, we restart the
To detectc_malloc routines, MemBrush searches for funcapplication after this step. While ensuring to do the replay
tions that match A1-A5 from Section II-B. Figure 2 representor every candidate function, MemBrush replays a number of
the procedure as a linear pipeline, in which each stage prandomly chosen invocations of the candidate.
gressively filters out functions that do not comply with the Finally, we filter out allocator wrappers (A5). MemBrush
corresponding features. classifies ac_malloc candidate as a wrapper if (1) it (or one
MemBrush starts by identifying a crude set ofmalloc of its callees) invokes a function actually categorized as a
candidates, i.e., functions that return pointers reférgnbeap allocator, and (2) whenever it returns a pointer, it passes
memory regions (Al). While the application executes, Mena value received from a callee without modifying it. The
Brush uses the pointer tracking mod@gto track all pointers implementation builds on the call stag and pointer tracking
derived from the addresses returned by the general-purpasedules(s).

IV. CUSTOMALLOCATOR DETECTION



Test if £un shares Test if the app can use based allocators, we expect multiplemalloc invocations to

the metadata with the released buffer again:

ac malloc routine tricka ¢ malloc routine matCh a Single:_free Candidate.

into reallocating it
e fumctions - o frees Following D2, MemBrush requires that oncec&ree can-
used Bytheapp [E —’DE: detectedy  didate releases a buffer, the application does not accesy it
more. Unless there is a use-after-free bug in the applicatio
the presence of such accesses suggests that the candidate is
not ac_free function. In practice, we tolerate some use-after-
free accesses to allow for bugs in the code, but the number of
such accesses should be less tham our experiments, we
V. CUSTOM DEALLOCATOR DETECTION usede — 1%.
To detectc_free routines, MemBrush searches for functions To analyze an invocation of @ free candidate, MemBrush
that it can couple with the already identifiedmalloc routines. identifies a matching:_malloc invocation, and monitors all
A c_free function matches a&_malloc routine if they share accesses to the associated heap buffer. If the applicaiibn s
their metadata, and allocate/release the same memonnsegiaises this buffer after the free candidate returns, it means that
The procedure is similar to that fer malloc functions in that the candidate function did not actually release the mensary,
MemBrush filters candidate functions in a linear pipeline af does not progress to the next step.
stages where each stage verifies one of the conditions D1-D4€3 states that whei_free reclaims a chunk of memory,
of Section II-B. Figure 3 illustrates a high-level picture. ~ the CMA may serve it again on future requests. To verify
The first stage is based on the observation that CMA roa-c_free candidate, we trickc_malloc into reallocating the
tines share some kind of metadata that records the positfonseclaimed memory. When the candidate deallocator returns,
free blocks. Hence, a free routine accesses data in memorye search the current execution trace fer malloc invocation
which ¢_malloc also uses to derive the return values (D1}hat allocated a buffer in the memory that was apparentlty jus
MemBrush first pinpoints the metadata, and then monitors tfreed, and we replay it many times in a call loop, as explained
application to identify the functions that read or modify itin Section IV. We retain the_free candidate if the allocator
which becomec_free candidates. returns the same pointer as the invocation being replayed. |
MemBrush determines the metadata whilenalloc func- contrast, we drop the candidate if themalloc function fails
tions execute. First, when@amalloc accesses a heap or statito reallocate that memory region—because it crashes, sturn
memory location for the first time, MemBrush tags it with @n error message, or requests more memory from the general-
unique identifier. Then, it employs the DIFT modul® to purpose allocator. As in Section IV, we restart the applcat
maintain a data flow graph which records how these valuafier this step.
propagate and how they are combined. When d¢healloc Finally, we decide which functions form the CMA inter-
routine returns, MemBrush pinpoints the metadata: it cheisuface (D4). If multiple functions in the same call stack reztth
the graph, and lists all memory locations that contributed this step, we pick the outermost one. The intuition is that
the calculation of the return value. Observe that the médadéunctions above the CMA interface never directly access the
might represent either pointers or indices/offsets which maetadata. Thus, if a function uses it, it must be CMA-related
CMA uses to compute the addresses of allocated regions. As
MemBrush employs a generic DIFT approach, it is impervious VI. CUSTOM REALLOCATOR DETECTION
to such implementation details. To detectc_realloc routines, we again generate a set of
The next two stages build on the observation thahalloc candidates candidates, and then verify them against R1¥R7 o
and c_free routines handle the same memory regions. Firsdection 1I-B in pipeline-fashion. Figure 4 presents an oy
MemBrush verifies that once a free candidate releases aof the algorithm. We will see that detection of reallocation
buffer, the application does not access it any more (D2)nTheoutines reuses many steps of the previous sections. This
it tries to make the CMA serve again a memory chunk thatakes sense, because a reallocation combines properties of
has just been reclaimed bycafree candidate (D3). Both stepsdeallocation and allocation.
require that, for each_free invocation, MemBrush pinpoints  First, we identify c_realloc candidates as those functions
at least one matching_malloc invocation, i.e., ac_malloc that return pointers to heap objects, and that share thedateta
which allocated a buffer reclaimed by a call to thefree with c_malloc routines (R1 and R2). The implementation of
candidate. this stages draws heavily on the checks for A1 and D1. Next, to
In a nutshell, MemBrush has two ways to couplenalloc  verify if the application uses a pointer returned by_aealloc
andc_free invocations. The first one relies on an accurate paandidate to write to the reallocated heap buffer in a write-
rameter match between the two functions. MemBrush requidesfore-read fashion (R3), we reuse the verification of A2
that all the arguments of the free candidate are either theand A3.
arguments or the return value of a pastnalloc invocation. R4 requires that if a_realloc candidate repeatedly serves
In the second (more generic) method;_analloc and ac_free a specific request, only the first invocation should trigger a
invocation match if they use the same metadata. Observe taetion and may relocate the buffer. Again, we confirm this
the mapping need not be one-to-one. For instance, for regimehavior by replaying the invocations. Specifically, whia t

Check that the app does not use Test if fun is not a wrapper
the buffer released by fun or an internal helper function

Fig. 3. Detection ofc_free functions.



Test if fun returns
a heap pointer p

Test if the app uses p
to write to memory
before reading it

Check if fun relocates
the buffer - does it copy
another heap buffer to
the new one?

routine, observe that it is not a trivial task. After all, sin
the application may well allocate more memory than it will

need during our tests, we cannot just monitor how much of
the buffer is actually used. MemBrush, instead, first cédlec
number of sample_malloc* invocations along with an upper
boundary on the size of the allocated buffers. Then, it tites
devise a formula capturing the relation between an argument
of the c_malloc function and the associated size.

The collection of samples is again based on the replay mech-
anism. MemBrush replays a number ofcamalloc function
invocations many times, and for each of them, it monitors the
stream of returned values. When the allocator serves rexjuest
from the same region obtained from the general purpose
allocator, MemBrush measures the distances between them.
They represent the upper bound on the size of the allocated
candidate returns, MemBrush replays this invocation magyiffers. Additionally, if MemBrush finds that the CMA stores
times in a call loop, and retains the candidate only if th@e metadata between the chunks returned to the application
returned value remains constant. it excludes these bytes from the distance measurement.

Next, we analyze if an invocation of @ realloc candidate  opserve that, we should only include the distances between
relocates a memory block to modify its size (R5). A simplé tegemory chunks adjacent to each other, lest we significantly
could check if a pointer returned by the candidate indicates gyerestimate the upper bound on their size. To this end,
object allocated by @_malloc function that is not yet freed. pemBrush waits for thec_malloc function to invoke the
Observe, however, that this requires an ability to aCCWatheneral-purpose allocator to allocate a new memory region,
pinpoint all objects released ly free routines. As we explain ang serve the requests from it (refer to the verification of A4
in Section IX, there exist CMA implementations which make, section IV). This way, we are certain that we keep track

it very challenging. of all the buffers allocated in that region, so our estimaid
MemBrush, on the other hand, leverages the fact thileir size is as accurate as possible.

c_realloc preserves the contents of reallocated memory blocks.|, the second step, for eachmalloc routine, MemBrush

Thus, when a_realloc function relocates an object, it alSogjes o derive a formula describing the size of an allocated
copies the old contents. To detect the copy operation, MeRljter as a function of an argument of themalloc. Specif-
Brush uses the DIFT modul®. It monitors if thec_realloc  jcajly, when we denote the size of the allocation request and
candidate (or any of its callees) copies data from a buffg{s \alue of one of the arguments of themalloc function by

already allocated by & malloc. In case of a relocation, ;.. andarg, respectively, we assume that the CMA uses one
MemBrush expects a copy of a contiguous block from g ihe following formulas:

address returned by a malloc to the return value of the
candidate. The source of this operation is the reallocated
buffer.

When the previous stage concludes that an invocation Qéxt, for each argument variable of the allocatory;, we
a c_realloc candidate relocates a buffer, we also confirdonsider all the collected pairs of the maximum estimated si
that the application does not access the reallocated buféeid arg;, (max_size,arg;), and we search for values of,
anymore (R6), and that the memory block is in fact freed (R7),, a-, andb, such that
This check is identical to the verification of D2 and D3—
again, we monitor the released memory, and we ftickalloc maz_size > a1 *arg; +b; and max_size > ag* 279 + by.
routines into reallocating it. The reallocated buffer det@es
the c_malloc invocation we need to replay.

funs: functions
used by the app > @

Check that repetitions of a
realloc request do not re-
locate the buffer, i.e., return p

YES

Test if fun shares
the metadata with
ac malloc routine

c_reallocs NO
BD—» [R?= detected PE—

by MemBrush

Check that the app
does not use the buffer|
released by fun

Test if the app can use

the released buffer again:
tricka ¢ malloc routine
into reallocating it

Fig. 4. Detection ofc_realloc functions.

size = a1 xarg + by Or size = ag * 279 + by.

Finally, we selectd; andb,) or (a2 andb,) thatfit the samples
best, i.e., minimize the cumulative distance between theega
of the formula and the boundary sizes.

We now unearth additional characteristics of CMAs. First, As we show in Section VIII, MemBrush’s mechanism yields
we describe MemBrush’s heuristic to estimate the size @fod results in practice. It does not work only if the object
buffers requested through malloc/c_realloc functions, and size is determined when the application initializes anansé
then we discuss how we distinguish between the differemsypof an allocator, and not when it allocates a buffer. Then,
of allocators from Section II-A. different invocations of the allocator function result iiffefent
allocation sizes, yet we cannot find a relation between them
and the function’s arguments.

Before we describe MemBrush’s procedure to estimate how
much memory the application requests from a custom allocato!we follow exactly the same procedure forrealloc routines.

VII. ADDITIONAL ANALYSIS OF THECMA ROUTINES

A. Buffer Size Estimation



Allocator Equal-sized Individual Multiple Application Allocators ~ Deallocators  Reallocators

chunks object deallocation TPs FPs TPs FNs TPs FNs
apache 3/5 - 4/6 - 0/1 -
Per-class v v X nginx 77 - 22 - o0 -
Region$ X X v smbget (samba)  1/1 - 1/1 - -
Obstackd X X v wget 171 - 11 - 11 -
Custom patterns X v X proftpd 6/6 - 5/5 - 0/0 -
Hybrid approaches X v v 400.perlbench  14/16 - 5/5 - 000 -
aWe use additional criteria to distinguish regions from abks. 401.bzip2 0/0 - 0/0 - 0/0 -
TABLE | 403.gcc 14/17 4 5/5 - 0/0 -
MEMBRUSH'S CRITERIA TO CLASSIFYCMAS. 429.mcf 0/0 - 0/0 - 0/0 -
446.gobmk 0/0 - 0/0 - 0/0 -
456.hmmer 0/0 - 0/0 - 0/0 -
. 458.sjeng 0/0 - 0/0 - 0/0 -
B. Classification of CMAs 462.libguantum  0/0 - 0/0 - 0/0 -
To classify CMAs, we examine two characteristics: the siz j%.hzsretf %//(g) - %//(g) - %//% -
of allocated buffers, and the relation between the allocati 473‘2222? PP 0/0 ) 0/0 - 000 )
and deallocation routines. Additionally, we need a means 483 xalancbmk  6/6 B 6/6 - 0/0 -
distinguish generic regions from obstacks.
. . . . . Total: 52/59 4 29/31 - 2/3 -
First, we check if a CMA splits a region obtained from « o
general-purpose allocator into equal-sized chunks. Bdhd, TABLE I

we monitor objects whose addresses are derived from the badé "= R ¢ OFMEMBRUSH'S ALGORITHM. THE TOP PART OF THE

) . E REPORTS THE RESULTS FOR REAL-WORLD APPLICATIONS, AND
of a particularmal | oc/mmap buffer, and we compare their tHe BoTTOM ONE— FOR THE SPECINT 2006 BENCHMARKING SUITE.

sizes. Next, we assess if a deallocator releases indiviolual
multiple objects at once. To find it out, we check how many

c_malloc invocations match a single invocation ofcafree i, astimate the size of buffers requested throwghalloc
(refer to Step 1 in Section V). functions.

Table | summarizes the decision procedure. As the basifie accuracy of the CMA routines detection. Table I
criteria are stringent enough to di_stinguish all allocdtgres presents an overview of the applications we analyzed with
except from obstacks, we adopt just one extra one. Obsefy&mBrush. The list contains five real-world programs, idelu
that, since obstacks allow for the freeing of objects alieda i, \he Apache and Nginx webservers, smbget from the Samba
smce_the creation of any Ob_]eCt in the region, _allocat'or}?etworking tool, the ProFTPD file server, and wget (configure
following a call to ac_free function do not necessarily start at; ;e the lockless allocator [28]). Additionally, we appli
the bottom of the region, but at any location inside it. ThujemBrush to the SpecINT 2006 benchmarking suite. To

we monitor streams of addresses of objects within indi\.lidugerify MemBrush's accuracy, we compare the results to the
regions, and we check if their increasing subsequencetsastar, o3| cMA routines in the programs. Thus, all the results

the same Iocanqn. . . presented in this section were obtained for binaries forctvhi

Even though it was not necessary in our experiments, W@ coy|d also consult the source code and get the ground truth
could agld|t|0nally vaho_late the per-class allpcatorstdad of For each application, we report the number of detected CMA
comparing only the sizes of allocated objects, we can alsg ines compared to the number of the CMA routines in the
examine th_e|r Iow_—IeveI data structures. We demonstrate ”&pplication (TPs), and the number of false positives (FPs).
procedure in Section VIII-C. Overall, MemBrush detected correcl§ out of 59 c_malloc
functions 88%), 29 out of 31 c_free routines 94%), and
2 out of 3 c_realloc functions ¢7%). As we discuss below,

In this section, we evaluate MemBrush. We discuss igany false negatives stem from compiler optimizations, and
accuracy (Section VIII-A), present some statistics ilashg we could prevent lots of them. As far as the false positives
the detection procedure (Section VIII-B), and finally were concerned, there were four. Even though strictly speaki
demonstrate the practical benefits of applying MemBrughese functions are false positives, in practice they weegpw
to an existing binary analysis technique for reversing dagers of an inlined allocator. Thus, by just looking at thealoyn
structures (Section VIII-C). MemBrush has no means to provide more accurate results [29],

' . and the identified functions do provide the application with
A. Accuracy of MemBrush’s Detection Algorithm memory chunks acting as proper allocators.

In this section, we evaluate the accuracy of MemBrush. WeFor the false negatives, we often missed a custom al-
start with an overview of the applications we tested, and viecator because we did not even classify it ag_@nalloc
report how well MemBrush managed to pinpoint the CMAandidate in the first step. We identified two reasons for
routines. Then, we continue with a classification of CMAghis: (1) the allocator passes a pointer in an outgoing ar-
Finally, we discuss the accuracy of MemBrush’s heuristgument, and not in the return value, or (2) instead of a

VIIl. EVALUATION
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Fig. 5. The accuracy of MemBrush's procedure to classify CMA rou-
tines. The bottom part of the graph presents the allocators that were

classified correctly, and the top one summarizes misclassifications. o
in A1l A2 A3

A5 out

pointer to a heap object, the allocator returns an offseichvh rig 6. The number of allocator candidates analyzed by MemBrush
the application adds to the base of a buffer (often usinghen verifying characteristics A1-A5. In Apache, there 3Befunc-

a macro) before accessing the memory. E.g., in Apachigns after the A5 step, and as they belong to different shared libraries,
the apr_rrmm mal | oc, apr_pool _create_ex custom allo- they map to3 functions in thel i bapr/l i bapr-util libraries.

cators, and also thapr _rnm r eal | oc reallocator, show this . . . .
hepr _r mm_ }l;pe CMA inserts new nodes in the list whenever an allocation

behavior. The same holds for the two missing allocators
400.perlbench, and one of the misses in 403.gcc. In orderdgeY"s: and deletes a number of the most recently added ones

reduce the first source of false negatives, we could extelig°" deallocation. Thus, the addresses of allocated chunks

MemBrush to consider results returned in parameters alég," list elements, do not form increasing subsequenceeas

using the techniques described by ElWazeer et al. [25]. %pected (refgr 0 S_ectlo? V”.' B). However, ats tobstacks ared
handle the allocators returning an offset instead of a pqinta more generic version ot regions, we are not too concerne

we could use dynamic information flow tracking to tell if theWIth this misclassification. . L
pe accuracy of the buffer size estimation.In general,

value returned by a function is later used to derive a pOintM Brush eith tel timated h h th
dereferencing heap memory. We leave it as a future work. embrush either accurately estimated how much memory the

o . . raY\PpIication requests from a custom allocator routine, or di
The remaining two false negatives in 403.gcc stem fronot rovide any results. It means, that MemBrush'’s analgsis
compiler optimizations. In the first case, the applicatibwvegs P y : '

. accurate, and the results are not misleading. MemBrushadid n
jumps to, and neveral | s, one of the custom allocators. In the . .

AR manage to deal witfi out of 59 allocators. As we mentioned
second case, thal | oc_page routine is inlined. MemBrush

. ) . ) already, in all these cases, the application determines the

detected four functions, which are, strictly speaking,ppers . .
: . size of the buffers when creating an allocator, and not when
of al | oc_page, but in practice behave as allocators. We

formally classified them as false positives, even thougly th?”ocatmg. an ObJeCt' Examples include thex_ar rayTpus_h
. . unction in nginx, and theapr _array_push function in
would be useful results in practice.

. . . Apache. For all the remaining allocators, we found that the
The two misses in the custom deallocator detection

Yl7e of the allocation is either of the for b) oritis a
Apache are caused solely by the false negatives in the aﬂocaconstant (arg +)

detection.apr _rmm mal | oc andapr _pool _create_ex are
the only allocators that can reallocate the memory relebgedB. Effectiveness and Necessity of Filtering Stages

apr_rmm free andapr_pool _destroy, respectively. Sinc€ e now present some statistics illustrating the analysis
we did not detect the allocators, we did not manage to trigkocedure. Due to space constraints, we limit the discassio
them into reallocating the just reclaimed memory eitheraAsy, he detection of the allocation routines. Figure 6 shows
result the two deallocator candidates did not pass the 8. filty,,, many allocator candidates MemBrush analyzed in each
In summary, we see that MemBrush’s algorithm provesep of its detection procedure. For all the applicatiohs, t
effective with very few false positives. The reason for Bkt A1 filter identifies up t0430 c_malloc candidates (with a
important false negatives is that we do not |dent|fy the ®alu median 0'[78), and their number gradua”y drops as MemBrush
returned by a function accurately enough. However, we Cafoceeds. Each time, it finds at leastvrapper function 193
employ existing techniques to further improve the procedurfor 483.xalancbmk, with a median aft), often invoking the
The accuracy of the CMA classification.Figure 5 presents general-purpose allocator.
the types of custom memory allocators classified by Mem- ) ]
Brush. The bottom part of the graph contains correctly cla§: Practical Benefits - a Show Case
sified functions, and the top one — misclassifications. In theln this section, we demonstrate the benefits of applying
403.gcc benchmark, MemBrush erroneously mistook obstaddemBrush to a binary analysis. We show that by furnishing
for region based allocators. Even though these allocaters an existing reverse engineering tool with information &tibe
conceptually obstack-based, each obstack is implemestad anterface implemented by a CMA, we significantly increase th
list of chunks, and not as a region split into individual leu§f. accuracy of the analysis.



Howard [2] is a tool to reverse data structures in strippec

Category Without MemBrush ~ With MemBrush

binaries. To analyze the memory allocated on the heap, Arrays Structs  Arrays  Structs
interposes on the systemml | oc andfree functions, and  The results in the number of variables:
tracks each chunk of memory thus allocated as a data steuctur OK 58-5‘V00 53-2‘;/0 93-22/0 91-32/0
Thus, when the binary uses a CMA, Howard does not analyz Flattened 0% 0% 0%  8.7%
. . 7 Missed 41.5% 46.8% 6.8% 0%
the data structures at the granularity used by the appitati ), ;sed 0% 0% 0% 0%
and its accuracy is low. However, with the knowledge acglire - T ber of bt
: : e results In the number ot bytes:
by MemBrush, Howard can mtt_erpose on the routines used b OK 60.4% 517% 92.4%  90.2%
the CMA, and further perform its analysis. . Flattened 0% 0% 0%  9.8%
As an example, we analyze heap memory in the sm Missed 39.6% 48.3% 7.6% 0%
bget utility in Samba. As the core memory allocator, it Unused 0% 0% 0% 0%
usestal | oc [30], a hierarchical, reference counted mem- TABLE IIl

ory pool system. MemBrush detects two CMA routines: the

THE ACCURACY OF THE DATA STRUCTURE ANALYSIS WITHOUT AND

__talloc() allocator and the talloc_free() dealloca- WITH MEMBRUSH' S DETECTION OFCMA FUNCTIONS.

tor. Table Il presents the results obtained by Howard in two
cases: (1) when it analyzes buffers allocated by the general
purpose allocation routines, and (2) when it also interpase leading to the four functions formally classified as false
the talloc() and__talloc_free() functions found by positives. Observe that analyzing the code that executet is
MemBrush. We split the results into four categories: course the right thing to do. Otherwise, we would not be able
« OK: Howard identified the entire data structure correctl{f analyze the real behavior of the binary or perform proper
(i.e., a correctly identified structure field is not counteéPr€nsics.
separately). Function parameter identification. In order to identify the
. Flattened: fields of a nested structure are counted as @A routine candidates, and later accurately maidiee and
normal field of the outer structure. c_malloc invocations, MemBrush monitors the return value
. Missed Howard misclassified the data structure. and the arguments of functions. Our current implementation

« Unused single fields, variables, or entire structures th@ssumes that functions pass the return value usingetbe
were never accessed during our tests. register, and the parameters using the stack. As we saw in

As expected, when we use the vanilla version of Howar§e0t|on VIII-A, this is not always enough. However, we could

all the memory that belongs to the heap buffers that are IaF@?’tend our t_echnlque as proposed by EIWaz_eer etal. [25].
Identification of the buffers released with a c_free

used by the CMA, is erroneously classified as arrays. Thus, iine. E thouah MemBrush telv detadt
we get meaningful results only for the remainis®)5% of the routiné. Even though Miembrush can accurately detectee

arrays ands3.2% of the structs allocated on the heap routines, there exist CMA implementations which make it
] ’ very challenging to pinpoint all the memory that is freed.

In contrast, when we combine Howard with MemBrush, thlg ¢ instan when one of the deallocators in the Apach
accuracy of the analysis increases significantly. N@8v2% or Instance, €n one ot the deaflocators In IN€ Apache
webserver releases a pool, it also reclaims all its subpools

of the arrays and1.3% of the struct variables allocated on ' . ! .
the heap are classified correctly. We counget flattened which are separate regions obtained from ihe general parpos

structures. They are all caused by a largeent r eq struc- allocator. Finding out in an implementation-agnostic way i

ture containing two nested substructures. As the addresgggcun'
of the substructures fields are always calculated relative t

the beginning oft event req, Howard had no means of L )

o . Vo Custom memory allocation is a mature field. Many real
classifying these regions as individual structures. Tlseilte world apolications use CMAs. tvpicallv to improve runtime
show that by using MemBrush, Howard is able to analyze the bp » ypicaty b

data structures actually used by smbget, instead of the Iaﬁ?erformance. Well-known examples include the Apache and

. . ginx webservers, the gcc compiler, among many others.
buffers further split by the CMA routines. Many research projects, like [31]-[34], propose new
memory managers designed for low overhead, and high-
performance memory allocation. Other approaches, e.g.,

MemBrush is not flawless. In this section, we discuss sond@eHard [35], Hound [36] and Cling [37], use custom memory
generic limitations we have identified. managers tailored to improve the memory safety of appli-

Compiler optimizations. In general, MemBrush detectscations using them. They help mitigate heap corruptions,
CMA routines at runtime, so the analysis results correspoddngling pointers or reads of uninitialized data.
to the optimized code, which may be different from what Many approaches that detect buffer overflows, use-aféesr-fr
is specified in the source. This is known as WYSINWY>or double-free attacks [6]-[11] rely on information aboké t
(What You See Is Not What You eXecute) [29], and it mighprograms’ data structures—specifically, the buffers that th
lead to inaccuracies. For instance, in the 403.gcc bendhmashould protect. Thus, in the presence of CMAs, their scope is
MemBrush has no means to identify an inlined allocatolimited to memory chunks obtained from the general-purpose

X. RELATED WORK

IX. LIMITATIONS



allocators. They would all directly benefit from MemBrush—12]
to offer a finer grained protection, and to detect attackshen t
actual data structures used by applications.

The most important outcome of our literature study, is thait4]
there is, to our knowledge, no work on detection of custom
memory allocation routines.

[13]

Xl. CONCLUSION =

Custom memory allocators are very common in real—worl[q6
applications, where they are used instead of the standar
allocation functions for performance reasons. Unfortalyat
many existing binary analysis techniques depend on tHe!
ability to intercept the memory allocation functions. Up tgg;
now this was not possible. In this paper, we presented a
set of techniques for identifying custom memory aIIoca,tiorlllg]
deallocation, and reallocation functions. Each of theseeth
categories is handled by a separate pipeline of filters tinat a
to test fundamental properties that most hold for almost aﬁy
implementation. We evaluated our techniques on a divertse se
of custom memory allocator implementations and verify rthel21]
accuracy on both Specint and several real-world applicatio
that are known to use custom memory allocators. In pratfica
all cases, we showed that we can find the allocation routin@s]
with great accuracy. Finally, we showed that the outcome E]Z]
our research is immediately useful by using the results én t
Howard data structure extraction tool.
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