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Abstract—Many reversing techniques for data structures rely
on the knowledge of memory allocation routines. Typically, they
interpose on the system’smalloc and free functions, and track
each chunk of memory thus allocated as a data structure. How-
ever, many performance-critical applications implement their
own custom memory allocators. Examples include webservers,
database management systems, and compilers like gcc and clang.
As a result, current binary analysis techniques for tracking data
structures fail on such binaries.

We present MemBrush, a new tool to detect memory allocation
and deallocation functions in stripped binaries with high accu-
racy. We evaluated the technique on a large number of real world
applications that use custom memory allocators. As we show, we
can furnish existing reversing tools with detailed information
about the memory management API, and as a result perform an
analysis of the actual application specific data structures designed
by the programmer. Our system uses dynamic analysis and
detects memory allocation and deallocation routines by searching
for functions that comply with a set of generic characteristics of
allocators and deallocators.

I. I NTRODUCTION

Many reversing techniques for data structures depend on
the analysis of memory allocated on the heap [1]–[5]. Typ-
ically, they interpose on the system’smalloc and free

functions, and track each chunk of memory thus allocated as
data structure. Doing so is well and good for applications
that use the standard memory allocation and de-allocation
functions, but unfortunately many larger and performance-
critical programs do not. Instead, they implement their own
custom memory managers, typically designed for efficiency.
Well-known examples of such applications include the Apache
webserver, the PostgreSQL database management system, the
gcc compiler, and Dropbox. As reverse engineers do not have
access to source, the precise memory allocation and dealloca-
tion functions are not known. As a result, all techniques that
build on the interposition of such functions fail.

The problem is that they only see the allocations by the
system’s general purpose allocators, but not the subdivision of
these allocations into smaller fragments by the application’s
custom memory allocator (CMA). Unfortunately, the larger
chunks that are visible to the reverse engineer serve merely
as a pool for the more relevant allocations of the actual data
structures. Phrased differently, the large chunks themselves are
mostly meaningless, while the smaller fragments are reused
by various functions and system calls. Missing them makes it
exceedingly difficult to observe any meaningful access patterns
and detect the objects designed by the programmer.

In this paper, we describe a set of techniques to detect mem-
ory allocation and deallocation functions in stripped C/C++
binaries with high accuracy. We implemented the techniques
in a tool called MemBrush and evaluated it on a large number
of custom memory allocators.

The main goal of MemBrush is to furnish existing reversing
tools, disassemblers and debuggers with detailed information
about the memory management API implemented by a CMA.
Knowing the CMA’s allocation, deallocation, and reallocation
routines, allows us to interpose on them and reuse the memory
analysis techniques for general-purpose allocators in applica-
tions that ‘roll their own’. To demonstrate it, we use Mem-
Brush to support an existing reverse tool called Howard [2].
Howard is a tool to extract low-level data structures from a
stripped binary. Thanks to MemBrush, Howard was able to
extract heap structures that it would otherwise not even see.

In addition, researchers have shown that knowledge of
memory allocation and deallocation routines is useful for
retrofitting security in existing binaries—for instance to protect
against memory corruption [6]–[11]. Currently, these security
measures are powerless if the application uses CMAs. Again,
with MemBrush these existing techniques should simply work,
regardless of the memory allocator.

High-level overview.The key observation behind MemBrush
is that memory allocation functions have characteristics that
set them apart from other routines. For instance, amalloc-
like routine will return a heap address andmalloc’s clients
will use pointers derived from that address to access memory,
and so on. MemBrush checks these characteristics at runtime
taking care to filter out routines that exhibit similar behavior
(like wrappers, iterators, etc.) as much as possible.

Like all dynamic analysis, MemBrush’s results depend on
the code that is covered at runtime. Specifically, it will not
find CMA routines in code that never executes. This paper is
not about code coverage techniques. Rather, we use test suites
to cover as much of the application as possible. Fortunately,
applications that employ CMAs, typically use the allocation
routines frequently—after all, that is why they have them in
the first place. Thus, finding inputs that exercise the CMA code
is not very difficult, and MemBrush identified almost 90% of
all the CMA routines in all the applications we tested.

In summary, MemBrush is able to unearth most CMA
routines in arbitrary (gcc-generated) binaries with a high
degree of precision. While it is too early to claim that the



problem of CMA identification is solved, MemBrush advances
the state of the art significantly. For instance, we managed to
accurately analyze the complex CMA systems used by the
Nginx webserver, or the ProFTPd file server.

We implemented all dynamic analysis techniques using
Intel’s Pin dynamic binary instrumentation framework [12].
Our current implementation works with x86 C/C++ binaries
on Linux generated by the gcc optimising compiler, but the
approach is not specific to any particular OS or compiler.

II. BACKGROUND AND OBSERVATIONS

Programmers incorporate custom memory allocators into
their applications to improve performance, and in the case of
region-based allocators – to reduce the programming burden
and eliminate a source of memory leaks.

Under the hood, CMAs use general-purpose memory allo-
cation routines, such asmalloc and mmap, to allocate large
buffers, and then define their own custom functions to allocate
these buffers into smaller ones. Applications use the resulting
blocks to store structured data items such as arrays, structs,
or C++ objects. When an application releases a block, a
CMA does not immediately return the memory to the general-
purpose allocator. Instead, it may serve it on a future request
by the application and defer the real deallocation (for instance,
until the time that no more requests are to be expected from
the application).

Rather than aiming for this or that custom memory al-
locator, the objective of MemBrush is to detectany CMA.
In Section II-A, we therefore introduce popular types of
custom memory allocators. Then, in Section II-B, we list the
essential characteristics of CMAs that lay the foundation for
our detection algorithm described in Sections III-VI.

A. A Taxonomy of CMAs

Since comprehensive overviews of CMAs can be found in
surveys by Wilson et al. [13] and Berger et al. [14], we limit
ourselves to a summary of the approaches in this section. Like
Berger et al. [14], we distinguish the following five categories:

Per-class allocators(also known asslaballocators). A per-
class allocator retains memory to contain data objects of the
same type (or size). It implements the same API as a general-
purpose memory allocator (malloc/free), i.e., it supports al-
location and deletion of individual objects. Slab allocators are
widely used by many Unix and Unix-like operating systems
including FreeBSD [15] (“zones”) and Linux [16].

Regions (also known asarenas, groups, and zones[17],
[18]). Each object allocated by an application is assigned to
a region, i.e., a large chunk of memory. Programmers can
only deallocate all objects from a region at once – individual
deallocations are not possible. This limitation facilitates allo-
cation and deallocation of memory with a low performance
overhead, at the cost of an increased memory usage. Example
applications using regions include Apache [19] (which refers
to them as “pools”), PostgreSQL [20] (which refers to them
as “memory contexts”), and Nginx [21].

Obstacks. An obstack [22] is a more generic version of
a region. It contains a stack of objects, within which an
individual object is freed along with everything allocatedin
this obstack since the creation of the object. An example
application using obstacks is the gcc compiler.

Custom patterns. This category includes all allocators
that implement the same API as a general-purpose memory
allocator (malloc/free), but are tailored to the needs of a
particular application. For example, one of the allocatorsused
by Nginx falls into this category.

Hybrid approaches.The research community has proposed
various approaches to provide e.g., high-speed allocationand
cache-level locality. For instance,reaps[14] are a combination
of regions and general-purpose allocators that extend region
semantics with individual object deletion.

B. Essential Characteristics of CMAs

Having looked at the different categories of CMA, we now
summarize their common features. It is important to emphasize
that these features aim to capture the fundamental behavior
of CMAs and not some implementation artifact of specific
variants. For instance, all of the eight CMA implementations
that we analyze in Section VIII exhibit these characteristics.
As we will see in Sections III-VI, these characteristics form the
basis for our detection algorithm. We will discuss allocation,
deallocation, and reallocation routines in turn. In a generic
sense, we will refer to these custom functions asc malloc,
c free, andc realloc, respectively.

Allocation routines. c malloc functions subdivide large
memory chunks obtained from a general-purpose allocator into
small ones, and serve the small ones upon the application’s
requests. We make the following basic observations about a
custom allocator’s behavior:

(A1) Normally, a c malloc function returns a pointerp that
references a heap memory region. As we discuss in
Section III, in some cases this rule should be relaxed.
E.g., ac malloc does not need to literallyreturn p, but
it might pass it through an outgoing argument.

(A2) Applications usep or a pointer derived fromp, e.g.,
(p+offset), to write to memory. Here also, we expect
some deviations from such behavior. For instance, it
is possible that the occasional application allocates a
memory block that it does not use. However, this should
be the exception, rather than the rule. If the application
(almost) never writes to memory referenced byp, then
the function that returns it does not serve as an allocator.

(A3) Unless thec malloc function initializes memory chunks
prior to returning them, the application should write to
these chunks before reading them.

(A4) A c malloc should not return the same object twice
until that chunk is released first with a call to ac free
function.

(A5) Since we aim to exclude wrapper functions, we require
that ac malloc not only checks and passes a pointer ob-
tained from another internal function, but also performs



some computations to derive the address of a newly
allocated object.

Deallocation routines.When an application frees a chunk
of memory obtained from ac malloc routine,c free reclaims
the chunk, so that it can be served again on future requests.
The algorithms in Section V are based on the following
characteristics of deallocators:
(D1) CMAs keep track of which parts of memory are in use,

and which parts are free. They record the locations and
sizes of free blocks in some kind ofmetadata, which
may be a list, a tree, a bitmap or another data structure.
Thus, ac free function accesses the metadata that is also
maintained by ac malloc function.

(D2) When ac free releases a memory region, the application
should not access it anymore unless there is a bug (and
we assume bugs are rare).

(D3) When ac free releases a memory object, ac malloc
may return it on future application’s requests.

(D4) Since we aim to exclude wrapper and internal helper
functions, we select the outermost function that shares
the metadata with ac malloc. The intuition is that if a
function does use the metadata, it should be considered
a part of the CMA.

Reallocation routines. Finally, c realloc functions allow
applications to modify the size of a previously allocated
memory block. To guarantee that the new block is contiguous
in memory,c realloc may have to relocate it elsewhere. We
consider the following features ofc realloc routines:
(R1) Like c malloc in A1, c realloc functions return a pointer

p to a heap memory region.
(R2) Like deallocation functions (D1),c realloc functions

also access the metadata used by ac malloc.
(R3) As in (A2) and (A3), applications usep or a pointer

derived fromp to write to memory, and write to the
allocated memory before reading it.

(R4) Once ac realloc modifies the size of a buffer, future
repetitions of the same request do not require any action,
so also do not relocate it (idempotence).

(R5) A c realloc preserves the contents of a memory block
up to the lesser of the new and old sizes. Thus, if the
block is relocated, ac realloc copies the old contents to
the new location.

When R5 finds that ac realloc function relocates a buffer, we
additionally verify R6–R7 below:

(R6) As ac realloc combines ac malloc and ac free, it also
releases a memory object, and the application should not
access it anymore (as in D2).

(R7) Likec free in D3, if a c realloc releases a memory object,
ac malloc might return it on future application’s requests.

Even though the above features reflect the expected behavior
of CMAs, we emphasize that MemBrush allows for occasional
deviations. For example, it is possible that an applicationhas a
use-after-free bug, and uses a chunk of memory even though it
has been deallocated already, violating D2. Also, even though
an application should not read uninitialized memory (a breach

Fig. 1. MemBrush: high-level overview.

of A3), we might occasionally observe such behavior. As we
will see later, we permit such exceptions as long as they are
rare. However, in practice, we did not come across them.

III. A BIRD’ S EYE VIEW OFMEMBRUSH

We now discuss the CMA detection procedure. MemBrush
consists ofinstrumentationmodules anddetectionmodules
(see Figure 1). The instrumentation modules,3©- 6©, provide
support (such as dynamic information flow tracking) for the
detection modules, while the detection modules,7©- 10©, search
for the CMA routines. In this section, we briefly introduce the
various components, and in the next four sections, we explain
the detection modules in detail.

In this paper, we search for CMA routines that operate on
top of the mmap/brk system calls or thelibc library (i.e.,
that internally callmalloc/free) to allocate large chunks of
memory. However, we can configure MemBrush to detect the
Doug Lea allocator [23] used by the GNU C library as well.
To do so, we would simply choose not to search for allocators
based onmalloc, but solely onmmap/brk.

We implemented MemBrush using Intel’s Pin dynamic
binary instrumentation framework [12]. Pin provides a rich
API to monitor context information, e.g., register or memory
contents, on program instructions, function- and system calls.

The main components of Figure 1 are the following:

• Inputs: 1© 2© The main input to MemBrush is a (possibly)
strippedx86 binary 1© and its inputs2©. For this paper, we
used existing test suites to cover as much of the application
as possible. If needed, we can also employ a code coverage
tool for binaries like S2E [24].

• Call stack tracking: 3© To analyze if a function’s behavior
is characteristic for a CMA routine, MemBrush monitors
the function and its callees. For that, it keeps track of
the context in the function call stack. Our implementation
follows Slowinska et al. [2].

• Partial reconstruction of physical stack frame: 4© To
analyze CMA routines, MemBrush needs to identify stack-
based procedure arguments. Like [2], our implementation
is based on dynamic analysis. In a nutshell, we monitor
how a function calculates pointers to access stack variables
pushed by its caller. If necessary, we can extend it with a
static analysis presented by ElWazeer et al. [25].



Fig. 2. Detection ofc malloc functions.

Additionally, to determine a first set of candidates for
c malloc and c realloc routines, MemBrush monitors the
return value of each executed function, and checks if it is
a pointer dereferencing a heap memory region. Since in
gcc generated binaries, 32-bit return values are normally
passed using theEAX register, MemBrush implements this
policy as well.

• Dynamic information flow tracking (DIFT): 5© As we
shall explain later, the detection modules rely on dynamic
information flow tracking (for data flow analysis). Our
tracker is an extended version oflibdft [26]. Like most
other DIFT engines [27], we propagate information on
direct flows only: we copy tags on data move operations,
or them on ALU operations, and so on. We do not
propagate any information on indirect data flows, such as
conditional statements.

• Pointer tracking: 6© MemBrush monitors how the appli-
cation uses pointers returned by thec malloc andc realloc
candidates. To this end, the pointer tracking module tracks
how pointers to heap memory derive from other pointers,
and where they are stored. Our implementation is based
on Slowinska et al. [2] which extends the generic DIFT
module 5© with pointer propagation rules.

• Detection modules: 7© 8© 9© 10© The detection modules
identify the actual CMA API: c malloc, c free, and
c realloc. MemBrush’s algorithms check for the character-
istic features discussed in Section II-B, and search for the
routines in turn. In the first step7©, MemBrush determines
c malloc routines. Then8©, it tries to findc free functions
that can be coupled with the already detected allocation
functions. In the last step9©, it identifiesc realloc routines.
Finally 10©, we perform an additional analysis of the
detected CMA routines.

IV. CUSTOM ALLOCATOR DETECTION

To detectc malloc routines, MemBrush searches for func-
tions that match A1-A5 from Section II-B. Figure 2 represents
the procedure as a linear pipeline, in which each stage pro-
gressively filters out functions that do not comply with the
corresponding features.

MemBrush starts by identifying a crude set ofc malloc
candidates, i.e., functions that return pointers referencing heap
memory regions (A1). While the application executes, Mem-
Brush uses the pointer tracking module6© to track all pointers
derived from the addresses returned by the general-purpose

memory allocators. This way, it also follows a custom alloca-
tor calculating the locations of allocated objects. MemBrush
monitors the return values of all functions invoked at runtime,
and selects the ones that return either a tracked pointer or a
single constant that might indicate an error, e.g.,NULL.

To verify A2, MemBrush tracks all pointers derived from
the return value of eachc malloc candidate, and monitors if
they are used to write to memory. To assess A3, MemBrush
additionally examines if the application uses these pointers
to write to a memory location before reading it. Unless the
allocator initializes the memory itself, the presence of such
read-before-writes suggests either that the candidate is no
c malloc function, or (if the occurrence is rare) that the
application is buggy. To deal with allocators that initialize their
own memory, MemBrush tags all memory locations written by
the candidate function (or its callees) with a unique identifier,
so that is able to spot the uninitialized reads later.

Next, we retain from the remainingc malloc candidates
only those functions that never return the same memory region
again until it is deallocated by ac free (A4).

Our approach draws on load testing. The basic idea is that
we insert a “call loop” that repeats specific invocations of the
candidate functions many times. As long as we ensure that the
application does not release the allocated region with a call to
a c free routine, we would expect a properc malloc to return
a stream of distinct addresses in accordance with (A1). The
candidate progresses to the next stage if either (1) it (or one
of its callees) invokes the general-purpose allocator to allocate
a new memory region and returns a pointer referencing it, or
(2) it begins to return a non-pointer value consistently, possibly
indicating that the application has run out of memory and
cannot allocate any extra. In contrast, we drop thec malloc
candidate if (1) the application crashes, (2) the return value is
a pointer already seen during the load test, or (3) the return
value is neither a pointer nor an invariable error message.

The implementation relies on a partial reconstruction of the
physical stack frame of thec malloc candidate 4©. First, we
pause the execution at acall instruction that transfers the
control flow to the candidate function, and we store theCPU

context of the call site. Specifically, we record the values of
the registers and the stack-based arguments. In order to replay
the invocation, MemBrush repeatedly resets theCPU context to
the recorded one, restarts the execution at thecall instruction,
pauses it again when the function returns, and examines the
return value. Since the replay loop might corrupt the state
of the application or cause a memory leak, we restart the
application after this step. While ensuring to do the replay
for every candidate function, MemBrush replays a number of
randomly chosen invocations of the candidate.

Finally, we filter out allocator wrappers (A5). MemBrush
classifies ac malloc candidate as a wrapper if (1) it (or one
of its callees) invokes a function actually categorized as an
allocator, and (2) whenever it returns a pointer, it passes
a value received from a callee without modifying it. The
implementation builds on the call stack3© and pointer tracking
modules 6©.



Fig. 3. Detection ofc free functions.

V. CUSTOM DEALLOCATOR DETECTION

To detectc free routines, MemBrush searches for functions
that it can couple with the already identifiedc malloc routines.
A c free function matches ac malloc routine if they share
their metadata, and allocate/release the same memory regions.
The procedure is similar to that forc malloc functions in that
MemBrush filters candidate functions in a linear pipeline of
stages where each stage verifies one of the conditions D1-D4
of Section II-B. Figure 3 illustrates a high-level picture.

The first stage is based on the observation that CMA rou-
tines share some kind of metadata that records the positionsof
free blocks. Hence, ac free routine accesses data in memory
which c malloc also uses to derive the return values (D1).
MemBrush first pinpoints the metadata, and then monitors the
application to identify the functions that read or modify it,
which becomec free candidates.

MemBrush determines the metadata whilec malloc func-
tions execute. First, when ac malloc accesses a heap or static
memory location for the first time, MemBrush tags it with a
unique identifier. Then, it employs the DIFT module5© to
maintain a data flow graph which records how these values
propagate and how they are combined. When thec malloc
routine returns, MemBrush pinpoints the metadata: it consults
the graph, and lists all memory locations that contributed to
the calculation of the return value. Observe that the metadata
might represent either pointers or indices/offsets which a
CMA uses to compute the addresses of allocated regions. As
MemBrush employs a generic DIFT approach, it is impervious
to such implementation details.

The next two stages build on the observation thatc malloc
and c free routines handle the same memory regions. First,
MemBrush verifies that once ac free candidate releases a
buffer, the application does not access it any more (D2). Then,
it tries to make the CMA serve again a memory chunk that
has just been reclaimed by ac free candidate (D3). Both steps
require that, for eachc free invocation, MemBrush pinpoints
at least one matchingc malloc invocation, i.e., ac malloc
which allocated a buffer reclaimed by a call to thec free
candidate.

In a nutshell, MemBrush has two ways to couplec malloc
andc free invocations. The first one relies on an accurate pa-
rameter match between the two functions. MemBrush requires
that all the arguments of thec free candidate are either the
arguments or the return value of a pastc malloc invocation.
In the second (more generic) method, ac malloc and ac free
invocation match if they use the same metadata. Observe that
the mapping need not be one-to-one. For instance, for region

based allocators, we expect multiplec malloc invocations to
match a singlec free candidate.

Following D2, MemBrush requires that once ac free can-
didate releases a buffer, the application does not access itany
more. Unless there is a use-after-free bug in the application,
the presence of such accesses suggests that the candidate is
not ac free function. In practice, we tolerate some use-after-
free accesses to allow for bugs in the code, but the number of
such accesses should be less thanǫ. In our experiments, we
usedǫ = 1%.

To analyze an invocation of ac free candidate, MemBrush
identifies a matchingc malloc invocation, and monitors all
accesses to the associated heap buffer. If the application still
uses this buffer after thec free candidate returns, it means that
the candidate function did not actually release the memory,so
it does not progress to the next step.

D3 states that whenc free reclaims a chunk of memory,
the CMA may serve it again on future requests. To verify
a c free candidate, we trickc malloc into reallocating the
reclaimed memory. When the candidate deallocator returns,
we search the current execution trace for ac malloc invocation
that allocated a buffer in the memory that was apparently just
freed, and we replay it many times in a call loop, as explained
in Section IV. We retain thec free candidate if the allocator
returns the same pointer as the invocation being replayed. In
contrast, we drop the candidate if thec malloc function fails
to reallocate that memory region—because it crashes, returns
an error message, or requests more memory from the general-
purpose allocator. As in Section IV, we restart the application
after this step.

Finally, we decide which functions form the CMA inter-
face (D4). If multiple functions in the same call stack reached
this step, we pick the outermost one. The intuition is that
functions above the CMA interface never directly access the
metadata. Thus, if a function uses it, it must be CMA-related.

VI. CUSTOM REALLOCATOR DETECTION

To detectc realloc routines, we again generate a set of
candidates candidates, and then verify them against R1-R7 of
Section II-B in pipeline-fashion. Figure 4 presents an overview
of the algorithm. We will see that detection of reallocation
routines reuses many steps of the previous sections. This
makes sense, because a reallocation combines properties of
deallocation and allocation.

First, we identify c realloc candidates as those functions
that return pointers to heap objects, and that share the metadata
with c malloc routines (R1 and R2). The implementation of
this stages draws heavily on the checks for A1 and D1. Next, to
verify if the application uses a pointer returned by ac realloc
candidate to write to the reallocated heap buffer in a write-
before-read fashion (R3), we reuse the verification of A2
and A3.

R4 requires that if ac realloc candidate repeatedly serves
a specific request, only the first invocation should trigger an
action and may relocate the buffer. Again, we confirm this
behavior by replaying the invocations. Specifically, when the



Fig. 4. Detection ofc realloc functions.

candidate returns, MemBrush replays this invocation many
times in a call loop, and retains the candidate only if the
returned value remains constant.

Next, we analyze if an invocation of ac realloc candidate
relocates a memory block to modify its size (R5). A simple test
could check if a pointer returned by the candidate indicatesan
object allocated by ac malloc function that is not yet freed.
Observe, however, that this requires an ability to accurately
pinpoint all objects released byc free routines. As we explain
in Section IX, there exist CMA implementations which make
it very challenging.

MemBrush, on the other hand, leverages the fact that
c realloc preserves the contents of reallocated memory blocks.
Thus, when ac realloc function relocates an object, it also
copies the old contents. To detect the copy operation, Mem-
Brush uses the DIFT module5©. It monitors if thec realloc
candidate (or any of its callees) copies data from a buffer
already allocated by ac malloc. In case of a relocation,
MemBrush expects a copy of a contiguous block from an
address returned by ac malloc to the return value of the
candidate. The source of this operation is the reallocated
buffer.

When the previous stage concludes that an invocation of
a c realloc candidate relocates a buffer, we also confirm
that the application does not access the reallocated buffer
anymore (R6), and that the memory block is in fact freed (R7).
This check is identical to the verification of D2 and D3—
again, we monitor the released memory, and we trickc malloc
routines into reallocating it. The reallocated buffer determines
the c malloc invocation we need to replay.

VII. A DDITIONAL ANALYSIS OF THE CMA ROUTINES

We now unearth additional characteristics of CMAs. First,
we describe MemBrush’s heuristic to estimate the size of
buffers requested throughc malloc/c realloc functions, and
then we discuss how we distinguish between the different types
of allocators from Section II-A.

A. Buffer Size Estimation

Before we describe MemBrush’s procedure to estimate how
much memory the application requests from a custom allocator

routine, observe that it is not a trivial task. After all, since
the application may well allocate more memory than it will
need during our tests, we cannot just monitor how much of
the buffer is actually used. MemBrush, instead, first collects a
number of samplec malloc1 invocations along with an upper
boundary on the size of the allocated buffers. Then, it triesto
devise a formula capturing the relation between an argument
of the c malloc function and the associated size.

The collection of samples is again based on the replay mech-
anism. MemBrush replays a number of ac malloc function
invocations many times, and for each of them, it monitors the
stream of returned values. When the allocator serves requests
from the same region obtained from the general purpose
allocator, MemBrush measures the distances between them.
They represent the upper bound on the size of the allocated
buffers. Additionally, if MemBrush finds that the CMA stores
the metadata between the chunks returned to the application,
it excludes these bytes from the distance measurement.

Observe that, we should only include the distances between
memory chunks adjacent to each other, lest we significantly
overestimate the upper bound on their size. To this end,
MemBrush waits for thec malloc function to invoke the
general-purpose allocator to allocate a new memory region,
and serve the requests from it (refer to the verification of A4
in Section IV). This way, we are certain that we keep track
of all the buffers allocated in that region, so our estimation of
their size is as accurate as possible.

In the second step, for eachc malloc routine, MemBrush
tries to derive a formula describing the size of an allocated
buffer as a function of an argument of thec malloc. Specif-
ically, when we denote the size of the allocation request and
the value of one of the arguments of thec malloc function by
size andarg, respectively, we assume that the CMA uses one
of the following formulas:

size = a1 ∗ arg + b1 or size = a2 ∗ 2
arg + b2.

Next, for each argument variable of the allocator,argi, we
consider all the collected pairs of the maximum estimated size
andargi, (max size, argi), and we search for values ofa1,
b1, a2, andb2 such that

max size ≥ a1 ∗argi+b1 and max size ≥ a2 ∗2
argi +b2.

Finally, we select (a1 andb1) or (a2 andb2) thatfit the samples
best, i.e., minimize the cumulative distance between the values
of the formula and the boundary sizes.

As we show in Section VIII, MemBrush’s mechanism yields
good results in practice. It does not work only if the object
size is determined when the application initializes an instance
of an allocator, and not when it allocates a buffer. Then,
different invocations of the allocator function result in different
allocation sizes, yet we cannot find a relation between them
and the function’s arguments.

1We follow exactly the same procedure forc realloc routines.



Allocator Equal-sized Individual Multiple
chunks object deallocation

Per-class X X ×
Regionsa × × X

Obstacksa × × X

Custom patterns × X ×
Hybrid approaches × X X

a We use additional criteria to distinguish regions from obstacks.
TABLE I

MEMBRUSH’ S CRITERIA TO CLASSIFYCMAS.

B. Classification of CMAs

To classify CMAs, we examine two characteristics: the sizes
of allocated buffers, and the relation between the allocation
and deallocation routines. Additionally, we need a means to
distinguish generic regions from obstacks.

First, we check if a CMA splits a region obtained from a
general-purpose allocator into equal-sized chunks. To this end,
we monitor objects whose addresses are derived from the base
of a particularmalloc/mmap buffer, and we compare their
sizes. Next, we assess if a deallocator releases individualor
multiple objects at once. To find it out, we check how many
c malloc invocations match a single invocation of ac free
(refer to Step 1 in Section V).

Table I summarizes the decision procedure. As the basic
criteria are stringent enough to distinguish all allocatortypes
except from obstacks, we adopt just one extra one. Observe
that, since obstacks allow for the freeing of objects allocated
since the creation of any object in the region, allocations
following a call to ac free function do not necessarily start at
the bottom of the region, but at any location inside it. Thus,
we monitor streams of addresses of objects within individual
regions, and we check if their increasing subsequences start at
the same location.

Even though it was not necessary in our experiments, we
could additionally validate the per-class allocators. Instead of
comparing only the sizes of allocated objects, we can also
examine their low-level data structures. We demonstrate this
procedure in Section VIII-C.

VIII. E VALUATION

In this section, we evaluate MemBrush. We discuss its
accuracy (Section VIII-A), present some statistics illustrating
the detection procedure (Section VIII-B), and finally we
demonstrate the practical benefits of applying MemBrush
to an existing binary analysis technique for reversing data
structures (Section VIII-C).

A. Accuracy of MemBrush’s Detection Algorithm

In this section, we evaluate the accuracy of MemBrush. We
start with an overview of the applications we tested, and we
report how well MemBrush managed to pinpoint the CMA
routines. Then, we continue with a classification of CMAs.
Finally, we discuss the accuracy of MemBrush’s heuristic

Application Allocators Deallocators Reallocators
TPs FPs TPs FNs TPs FNs

apache 3/5 - 4/6 - 0/1 -
nginx 7/7 - 2/2 - 0/0 -
smbget (samba) 1/1 - 1/1 - 1/1 -
wget 1/1 - 1/1 - 1/1 -
proftpd 6/6 - 5/5 - 0/0 -

400.perlbench 14/16 - 5/5 - 0/0 -
401.bzip2 0/0 - 0/0 - 0/0 -
403.gcc 14/17 4 5/5 - 0/0 -
429.mcf 0/0 - 0/0 - 0/0 -
446.gobmk 0/0 - 0/0 - 0/0 -
456.hmmer 0/0 - 0/0 - 0/0 -
458.sjeng 0/0 - 0/0 - 0/0 -
462.libquantum 0/0 - 0/0 - 0/0 -
464.h26ref 0/0 - 0/0 - 0/0 -
471.omnetpp 0/0 - 0/0 - 0/0 -
473.astar 0/0 - 0/0 - 0/0 -
483.xalancbmk 6/6 - 6/6 - 0/0 -

Total: 52/59 4 29/31 - 2/3 -

TABLE II
THE ACCURACY OFMEMBRUSH’ S ALGORITHM. THE TOP PART OF THE

TABLE REPORTS THE RESULTS FOR5 REAL-WORLD APPLICATIONS, AND

THE BOTTOM ONE— FOR THESPECINT 2006BENCHMARKING SUITE.

to estimate the size of buffers requested throughc malloc
functions.
The accuracy of the CMA routines detection. Table II
presents an overview of the applications we analyzed with
MemBrush. The list contains five real-world programs, includ-
ing the Apache and Nginx webservers, smbget from the Samba
networking tool, the ProFTPD file server, and wget (configured
to use the lockless allocator [28]). Additionally, we applied
MemBrush to the SpecINT 2006 benchmarking suite. To
verify MemBrush’s accuracy, we compare the results to the
actual CMA routines in the programs. Thus, all the results
presented in this section were obtained for binaries for which
we could also consult the source code and get the ground truth.
For each application, we report the number of detected CMA
routines compared to the number of the CMA routines in the
application (TPs), and the number of false positives (FPs).

Overall, MemBrush detected correctly52 out of59 c malloc
functions (88%), 29 out of 31 c free routines (94%), and
2 out of 3 c realloc functions (67%). As we discuss below,
many false negatives stem from compiler optimizations, and
we could prevent lots of them. As far as the false positives
are concerned, there were four. Even though strictly speaking,
these functions are false positives, in practice they were wrap-
pers of an inlined allocator. Thus, by just looking at the binary,
MemBrush has no means to provide more accurate results [29],
and the identified functions do provide the application with
memory chunks acting as proper allocators.

For the false negatives, we often missed a custom al-
locator because we did not even classify it as ac malloc
candidate in the first step. We identified two reasons for
this: (1) the allocator passes a pointer in an outgoing ar-
gument, and not in the return value, or (2) instead of a
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Fig. 5. The accuracy of MemBrush’s procedure to classify CMA rou-
tines. The bottom part of the graph presents the allocators that were
classified correctly, and the top one summarizes misclassifications.

pointer to a heap object, the allocator returns an offset, which
the application adds to the base of a buffer (often using
a macro) before accessing the memory. E.g., in Apache,
the apr_rmm_malloc, apr_pool_create_ex custom allo-
cators, and also theapr_rmm_realloc reallocator, show this
behavior. The same holds for the two missing allocators in
400.perlbench, and one of the misses in 403.gcc. In order to
reduce the first source of false negatives, we could extend
MemBrush to consider results returned in parameters also,
using the techniques described by ElWazeer et al. [25]. To
handle the allocators returning an offset instead of a pointer,
we could use dynamic information flow tracking to tell if the
value returned by a function is later used to derive a pointer
dereferencing heap memory. We leave it as a future work.

The remaining two false negatives in 403.gcc stem from
compiler optimizations. In the first case, the application always
jumps to, and nevercalls, one of the custom allocators. In the
second case, thealloc_page routine is inlined. MemBrush
detected four functions, which are, strictly speaking, wrappers
of alloc_page, but in practice behave as allocators. We
formally classified them as false positives, even though they
would be useful results in practice.

The two misses in the custom deallocator detection in
Apache are caused solely by the false negatives in the allocator
detection.apr_rmm_malloc andapr_pool_create_ex are
the only allocators that can reallocate the memory releasedby
apr_rmm_free andapr_pool_destroy, respectively. Since
we did not detect the allocators, we did not manage to trick
them into reallocating the just reclaimed memory either. Asa
result the two deallocator candidates did not pass the D3 filter.

In summary, we see that MemBrush’s algorithm proves
effective with very few false positives. The reason for all the
important false negatives is that we do not identify the values
returned by a function accurately enough. However, we can
employ existing techniques to further improve the procedure.
The accuracy of the CMA classification.Figure 5 presents
the types of custom memory allocators classified by Mem-
Brush. The bottom part of the graph contains correctly clas-
sified functions, and the top one – misclassifications. In the
403.gcc benchmark, MemBrush erroneously mistook obstacks
for region based allocators. Even though these allocators are
conceptually obstack-based, each obstack is implemented as a
list of chunks, and not as a region split into individual buffers.
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Fig. 6. The number of allocator candidates analyzed by MemBrush
when verifying characteristics A1-A5. In Apache, there are35 func-
tions after the A5 step, and as they belong to different shared libraries,
they map to3 functions in thelibapr/libapr-util libraries.

The CMA inserts new nodes in the list whenever an allocation
occurs, and deletes a number of the most recently added ones
upon deallocation. Thus, the addresses of allocated chunks,
i.e., list elements, do not form increasing subsequences aswe
expected (refer to Section VII-B). However, as obstacks are
a more generic version of regions, we are not too concerned
with this misclassification.
The accuracy of the buffer size estimation.In general,
MemBrush either accurately estimated how much memory the
application requests from a custom allocator routine, or did
not provide any results. It means, that MemBrush’s analysisis
accurate, and the results are not misleading. MemBrush did not
manage to deal with7 out of 59 allocators. As we mentioned
already, in all these cases, the application determines the
size of the buffers when creating an allocator, and not when
allocating an object. Examples include thengx_array_push
function in nginx, and theapr_array_push function in
Apache. For all the remaining allocators, we found that the
size of the allocation is either of the form(arg+ b) or it is a
constant.

B. Effectiveness and Necessity of Filtering Stages

We now present some statistics illustrating the analysis
procedure. Due to space constraints, we limit the discussion
to the detection of the allocation routines. Figure 6 shows
how many allocator candidates MemBrush analyzed in each
step of its detection procedure. For all the applications, the
A1 filter identifies up to430 c malloc candidates (with a
median of78), and their number gradually drops as MemBrush
proceeds. Each time, it finds at least1 wrapper function (193
for 483.xalancbmk, with a median of14), often invoking the
general-purpose allocator.

C. Practical Benefits - a Show Case

In this section, we demonstrate the benefits of applying
MemBrush to a binary analysis. We show that by furnishing
an existing reverse engineering tool with information about the
interface implemented by a CMA, we significantly increase the
accuracy of the analysis.



Howard [2] is a tool to reverse data structures in stripped
binaries. To analyze the memory allocated on the heap, it
interposes on the system’smalloc and free functions, and
tracks each chunk of memory thus allocated as a data structure.
Thus, when the binary uses a CMA, Howard does not analyze
the data structures at the granularity used by the application,
and its accuracy is low. However, with the knowledge acquired
by MemBrush, Howard can interpose on the routines used by
the CMA, and further perform its analysis.

As an example, we analyze heap memory in the sm-
bget utility in Samba. As the core memory allocator, it
usestalloc [30], a hierarchical, reference counted mem-
ory pool system. MemBrush detects two CMA routines: the
__talloc() allocator and the__talloc_free() dealloca-
tor. Table III presents the results obtained by Howard in two
cases: (1) when it analyzes buffers allocated by the general
purpose allocation routines, and (2) when it also interposes on
the __talloc() and__talloc_free() functions found by
MemBrush. We split the results into four categories:

• OK : Howard identified the entire data structure correctly
(i.e., a correctly identified structure field is not counted
separately).

• Flattened: fields of a nested structure are counted as a
normal field of the outer structure.

• Missed: Howard misclassified the data structure.
• Unused: single fields, variables, or entire structures that

were never accessed during our tests.

As expected, when we use the vanilla version of Howard,
all the memory that belongs to the heap buffers that are later
used by the CMA, is erroneously classified as arrays. Thus,
we get meaningful results only for the remaining58.5% of the
arrays and53.2% of the structs allocated on the heap.

In contrast, when we combine Howard with MemBrush, the
accuracy of the analysis increases significantly. Now,93.2%
of the arrays and91.3% of the struct variables allocated on
the heap are classified correctly. We counted8.7% flattened
structures. They are all caused by a largetevent_req struc-
ture containing two nested substructures. As the addresses
of the substructures fields are always calculated relative to
the beginning oftevent_req, Howard had no means of
classifying these regions as individual structures. The results
show that by using MemBrush, Howard is able to analyze the
data structures actually used by smbget, instead of the large
buffers further split by the CMA routines.

IX. L IMITATIONS

MemBrush is not flawless. In this section, we discuss some
generic limitations we have identified.

Compiler optimizations. In general, MemBrush detects
CMA routines at runtime, so the analysis results correspond
to the optimized code, which may be different from what
is specified in the source. This is known as WYSINWYX
(What You See Is Not What You eXecute) [29], and it might
lead to inaccuracies. For instance, in the 403.gcc benchmark,
MemBrush has no means to identify an inlined allocator,

Category Without MemBrush With MemBrush
Arrays Structs Arrays Structs

The results in the number of variables:
OK 58.5% 53.2% 93.2% 91.3%
Flattened 0% 0% 0% 8.7%
Missed 41.5% 46.8% 6.8% 0%
Unused 0% 0% 0% 0%

The results in the number of bytes:
OK 60.4% 51.7% 92.4% 90.2%
Flattened 0% 0% 0% 9.8%
Missed 39.6% 48.3% 7.6% 0%
Unused 0% 0% 0% 0%

TABLE III
THE ACCURACY OF THE DATA STRUCTURE ANALYSIS WITHOUT AND

WITH MEMBRUSH’ S DETECTION OFCMA FUNCTIONS.

leading to the four functions formally classified as false
positives. Observe that analyzing the code that executes isof
course the right thing to do. Otherwise, we would not be able
to analyze the real behavior of the binary or perform proper
forensics.

Function parameter identification. In order to identify the
CMA routine candidates, and later accurately matchc free and
c malloc invocations, MemBrush monitors the return value
and the arguments of functions. Our current implementation
assumes that functions pass the return value using theEAX

register, and the parameters using the stack. As we saw in
Section VIII-A, this is not always enough. However, we could
extend our technique as proposed by ElWazeer et al. [25].

Identification of the buffers released with a c free
routine. Even though MemBrush can accurately detectc free
routines, there exist CMA implementations which make it
very challenging to pinpoint all the memory that is freed.
For instance, when one of the deallocators in the Apache
webserver releases a pool, it also reclaims all its subpools,
which are separate regions obtained from the general purpose
allocator. Finding out in an implementation-agnostic way is
difficult.

X. RELATED WORK

Custom memory allocation is a mature field. Many real
world applications use CMAs, typically to improve runtime
performance. Well-known examples include the Apache and
Nginx webservers, the gcc compiler, among many others.

Many research projects, like [31]–[34], propose new
memory managers designed for low overhead, and high-
performance memory allocation. Other approaches, e.g.,
DieHard [35], Hound [36] and Cling [37], use custom memory
managers tailored to improve the memory safety of appli-
cations using them. They help mitigate heap corruptions,
dangling pointers or reads of uninitialized data.

Many approaches that detect buffer overflows, use-after-free
or double-free attacks [6]–[11] rely on information about the
programs’ data structures—specifically, the buffers that they
should protect. Thus, in the presence of CMAs, their scope is
limited to memory chunks obtained from the general-purpose



allocators. They would all directly benefit from MemBrush—
to offer a finer grained protection, and to detect attacks on the
actual data structures used by applications.

The most important outcome of our literature study, is that
there is, to our knowledge, no work on detection of custom
memory allocation routines.

XI. CONCLUSION

Custom memory allocators are very common in real-world
applications, where they are used instead of the standard
allocation functions for performance reasons. Unfortunately,
many existing binary analysis techniques depend on the
ability to intercept the memory allocation functions. Up to
now this was not possible. In this paper, we presented a
set of techniques for identifying custom memory allocation,
deallocation, and reallocation functions. Each of these three
categories is handled by a separate pipeline of filters that aim
to test fundamental properties that most hold for almost any
implementation. We evaluated our techniques on a diverse set
of custom memory allocator implementations and verify their
accuracy on both SpecInt and several real-world applications
that are known to use custom memory allocators. In practically
all cases, we showed that we can find the allocation routines
with great accuracy. Finally, we showed that the outcome of
our research is immediately useful by using the results in the
Howard data structure extraction tool.
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