
Combining Static and Dynamic Analysis for the Detection
of Malicious Documents

Zacharias Tzermias,* Giorgos Sykiotakis,† Michalis Polychronakis,‡ Evangelos P. Markatos*

*Institute of Computer Science, Foundation for Research and Technology—Hellas, Greece
†University of Crete, Greece
‡Columbia University, USA

{tzermias, markatos}@ics.forth.gr, sykiotak@csd.uoc.gr, mikepo@cs.columbia.edu

ABSTRACT

The widespread adoption of the PDF format for document
exchange has given rise to the use of PDF files as a prime
vector for malware propagation. As vulnerabilities in the
major PDF viewers keep surfacing, effective detection of
malicious PDF documents remains an important issue. In
this paper we present MDScan, a standalone malicious doc-
ument scanner that combines static document analysis and
dynamic code execution to detect previously unknown PDF
threats. Our evaluation shows that MDScan can detect a
broad range of malicious PDF documents, even when they
have been extensively obfuscated.

1. INTRODUCTION
The Portable Document Format (PDF) is one of the most

popular file formats for document exchange. As the focus of
attackers has recently shifted from server-side to client-side
attacks, the universal adoption of the PDF format has ren-
dered PDF documents a prime vector for malware distribu-
tion [22]. A key aspect of this increased attractiveness of the
PDF format from the side of the attackers is the complex-
ity of the feature-rich Adobe Reader for Windows—probably
the most widely used PDF viewer—which has led to the dis-
covery of many exploitable vulnerabilities. In many cases,
other PDF viewers also suffer from the same or similar weak-
nesses.
In contrast to drive-by download attacks [13], besides be-

ing served by rogue web sites, malicious PDF files can also
be distributed through other means, such as file-sharing net-
works, removable media, or as attachments to email mes-
sages. The latter method has lately been particularly effec-
tive in combination with some social engineering tactics for
targeted attacks against individual organizations. Due to
the widespread use of PDF documents in corporate environ-
ments, PDF files are rarely blocked or face other restrictions
even under strict security policies.
In essence, malicious PDF documents can be thought of as

the rebirth of the macro viruses that plagued Microsoft Of-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EUROSEC ’11, Salzburg, Austria
Copyright 2011 ACM 978-1-4503-0613-3/11/04 ...$10.00.

fice and other productivity suites from the mid-1990s to the
early 2000s [17]. One of the factors that led to the extinc-
tion of macro viruses was the additional security measures
and protections that were gradually being applied to newer
versions of the affected applications. Similarly, Reader X,
the most recent version of Adobe Reader, comes with secu-
rity features such as sandboxing and isolation, which signif-
icantly reduce the risk of full system compromise.

However, until the current vast user base of older versions
of the most popular PDF viewers diminishes significantly,
the effective detection of existing PDF threats will remain
an important issue. For example, as we demonstrate, an-
tivirus applications do not provide adequate detection cover-
age even for well-known PDF threats, while the use of simple
obfuscation techniques can decrease the detection rate even
further.

In this paper we present the design and implementation of
MDScan, a standalone malicious document scanner that an-
alyzes individual PDF documents and detects any embedded
malicious code. Through the combination of static analysis
of the document format representation, and dynamic anal-
ysis of the embedded script code, MDScan can detect PDF
documents that exploit even previously unknown vulnera-
bilities in PDF viewers. The autonomous design of MDScan
allows it to be easily incorporated as a detection compo-
nent into existing defenses, such as intrusion detection sys-
tems and antivirus applications. Our experimental evalua-
tion with real and generated malicious documents, as well as
benign PDF files, shows that MDScan can accurately detect
a broad range of malicious documents, even when they have
been highly obfuscated, while it has a reasonable runtime
processing overhead.

2. BACKGROUND
PDF, created by Adobe Systems, has become the de facto

file format for the distribution of printable documents. A file
adhering to the PDF specification has four main sections: a
one-line header with the version number of the PDF spec-
ification; the main body of the document, which consists
of objects such as text, images, fonts, annotations, or even
other embedded files; a cross-reference table with the offsets
of the objects within the file; and finally, a trailer for quick
access to the cross-reference table and other special objects.

Besides static data, PDF objects can also contain code
written in JavaScript. This allows document authors to
incorporate sophisticated features such as form validation,
multimedia content, or even communication with external
systems and applications. Unfortunately, attackers can also

Figure 1: Overall architecture of MDScan.

take advantage of the versatility offered by JavaScript for
the exploitation of arbitrary code execution vulnerabilities
in the PDF viewer application. Through JavaScript, the
attacker can achieve two crucial goals: trigger the vulner-
able code, and divert the execution to code of his choice.
Depending on the vulnerability, the first is achieved by call-
ing the vulnerable API function or otherwise setting up the
necessary conditions. Then, through heap-spraying [13] or
other memory manipulation techniques, the flow of control
is transferred to the embedded shellcode, which carries out
the final step of the attack, e.g., dumping on disk and then
launching an embedded malware executable.
Besides exploiting some vulnerability in the PDF viewer,

attackers have exploited advanced PDF features such as the
/Launch option, which automatically launches an embedded
executable, or the /URI and /GoTo options [14], which can
open external resources form the same host or the Internet.
Although in both cases the application first asks for user
authorization, such features are quite hazardous, and after
the public exposure of their security implications they were
promptly mitigated.

3. DESIGN AND IMPLEMENTATION
The mere presence of JavaScript code in a PDF file is

not an indication of malicious intent, even if the code has
been highly obfuscated. Besides hindering malicious code
analysis, code obfuscation is legitimately used for prevent-
ing reverse engineering of proprietary applications. To be
resilient against highly obfuscated code, MDScan analyzes
any embedded code by actually running it on a JavaScript
interpreter. During execution, if some form of shellcode is
revealed in the address space of the JavaScript interpreter,
then the input document is flagged as malicious.
Document scanning in MDScan consists mainly of two

phases. In the first phase, MDScan analyzes the input file
and reconstructs the logical structure of the document by
extracting all identified objects, including objects that con-
tain JavaScript code. In the second phase, any JavaScript
code found in the document is executed on an instrumented
JavaScript interpreter, which at runtime can detect the pres-
ence of embedded shellcode. The overall design of MDScan
is presented in Fig. 1. In the following, we describe its main
components and the details of our detection method.

3.1 Document Analysis
Upon reading the input document, MDScan analyzes its

structure and extracts all identified objects, which are then
organized in a hierarchical structure. The complexity and
ambiguities [22, 24, 26] of the PDF specification make this

process a non-trivial task. In addition, most PDF viewers,
including Adobe Reader, attempt to render even malformed
documents, and generally do not strictly follow the PDF
specification. This gives attackers even more room to hinder
document analysis, by taking advantage of these intricacies
to obfuscate the structure of malicious PDF files.

3.1.1 File Parsing

File parsing begins with the extraction of all objects found
in the body of the document, including objects that have
been deliberately left out from the cross-reference table. In
fact, the cross-reference table can be omitted altogether, as
in the document shown in Fig. 2, along with other required
(according to the PDF specification) elements, such as the
endobj, endstream, and %%EOF keywords. Attackers can also
use seemingly incorrect but actually valid keywords, such as
objend instead of endobj. In general, the parser is resilient
on parsing errors, and attempts to extract as much informa-
tion as possible in a best-effort manner, in accordance with
the behavior of the most popular PDF viewers.

After all objects have been identified, the parser proceeds
to a normalization step that neutralizes any further obfus-
cations, and extracts semantic information about each iden-
tified object. Probably the most common object-level ob-
fuscation technique is the use of filters to transform the ob-
ject stream data and conceal the embedded JavaScript code.
The PDF format supports many different filters for the de-
compression of arbitrary data (/FlateDecode, /LZWDecode,
/RunLengthDecode), the decompression of images (/JBIG2-
Decode, /CCITTFaxDecode, /DCTDecode, /JPXDecode), or the
decoding of arbitrary 8-bit data that have been encoded as
ASCII text (/ASCIIHexDecode, /ASCII85Decode).

For instance, a typical use of these filters is to compress an
image using JBIG2 compression, and then encode the com-
pressed data using an ASCII hexadecimal representation. In
practice, attackers can combine any number of filters to con-
ceal the embedded malicious javascript code. Special care
is taken for the correct handling of filter abbreviations such
as the use of /Fl in place of /FlateDecode. Although it is
straightforward to extract the encoded data by undoing each
transformation, stream compression is very effective against
simple detection methods such as pattern matching.

Another important aspect of the object normalization step
deals with keywords that have been encoded using an ASCII
hexadecimal representation. The PDF format allows the ar-
bitrary use of hexadecimal numbers in place of ASCII char-
acters in keywords, as shown in Fig. 3. Similarly, strings
in objects can be represented using various other encodings,
such as octal or hexadecimal representations with flexible
character whitespace requirements [24]. Finally, version 1.5
of the PDF specification introduced the concept of object
streams, which contain a sequence of PDF objects. Sophis-
ticated attackers have been using this feature for deeper
concealment of PDF objects that contain malicious code by
wrapping them inside object streams. MDScan handles ob-
ject streams by identifying objects with a /Type key that
has the value /ObjStm in the object’s dictionary.

3.1.2 Emulation of the JavaScript for Acrobat API

Adobe Reader provides an extensive API that allows au-
thors to create feature-rich documents with a wide range of
functionality. The JavaScript for Acrobat API is accessi-
ble as a set of JavaScript extensions that provide document-

1 %PDF-1.1
2 1 0 obj <<
3 /Type /Catalog
4 /Pages 1 0 R
5 /OpenAction <<
6 /S /JavaScript
7 /JS (app.alert({cMsg: ’Hello!’});)
8 >>
9 >>

10 endobj
11

12 2 0 obj <<
13 /Title (Malicious Document)
14 >>
15

16 trailer <<
17 /Root 1 0 R
18 /Info 2 0 R
19 >>

Figure 2: A malformed (missing cross-reference ta-
ble, an endobj keyword, and %%EOF) PDF document
that is rendered normally by Adobe Reader.

specific objects, properties, and methods. Unfortunately, at-
tackers can take advantage of this versatile API to obfuscate
further their malicious documents. This can be achieved by
embedding parts of the JavaScript code, or actual data on
which it depends, into objects or elements that are accessible
only through the Acrobat API. The malicious code can then
retrieve its missing parts or access any hidden data through
the Acrobat API, and continue its execution.
For instance, some malicious PDFs use the info property

of the Adobe JavaScript Document Object Model (DOM)
to store parts of code or data, as shown in Fig. 3. The info
property provides access to document metadata such as the
document title, author, copyright notice, and so on. Other
objects that can hold data supplied by the attacker include
annotations, XML specifications for embedded forms [10],
or even the document pages themselves. For example, the
script can read the actual words of a page using the getPa-

geNthWord function.
It is clear from the above that the proper execution of the

code embedded in a malicious PDF file requires an environ-
ment that provides the functionality offered by the Acro-
bat API. Unfortunately, standalone JavaScript engines such
as SpiderMonkey [1], which is the engine used in MDScan,
do not support this API and are not aware of the Adobe
JavaScript DOM, since both are proprietary. In MDScan,
we resolve this issue by augmenting the JavaScript engine
with our own implementation of the DOM parts and the API
calls that are most frequently used in malicious PDF docu-
ments. We have followed an incremental approach, adding
more functions according to the ones found in the samples
that we have encountered so far. After the completion of the
data parsing and normalization steps, MDScan analyzes the
identified objects and reconstructs the hierarchical structure
of the DOM objects needed for the emulation of the imple-
mented API calls.

3.1.3 JavaScript Code Extraction

After all extracted objects have been analyzed, we need to
identify the objects that contain JavaScript code, and recon-
struct the entire code image that will be fed to the JavaScript
engine for execution. According to the PDF specification,

1 ..JUNKDATA..%PDF-x.y..JUNKDATA..
2 1 0 obj <</tYpE
3 /C#61t#41log /#50#61#67#65#73 1 0 R
4 /Open#41ction<<
5 /S/JavaScript/JS(eval(
6 this.\
7 info.author);)>>>>
8 ..JUNKDATA..
9

10 6 0 obj <<
11 /Title <4D61 6C 69636
12 96F757320446F63756D656E 74>
13 /Author(app.al\145rt(
14 {cMsg: ’Hell\157!’});)
15 >>
16

17 trailer<</Root 1 0 R/Info 6 0 R>>
18

19 ..JUNKDATA..

Figure 3: An obfuscated version of the document
shown in Fig. 2 that is still rendered normally by
Adobe Reader. Note that a part of the original
JavaScript code has been stored into a non-code ob-
ject, and that no PDF filters are used.

objects that contain JavaScript code are denoted by the key-
word /JS. The code can be located either in the object itself,
or in some other object linked to the parent object through
an indirect reference (or a chain of indirectly linked objects).

At this point, we aim to recover only the initial JavaScript
code that is set to run automatically when the document
is opened. A common practice of malicious PDF authors
is to scatter this code across many objects with the aim
to hinder detection and analysis. However, no matter into
how many objects the code has been split, in order for the
original code to be executable when the document is opened,
the respective objects (or their associated parent objects)
should all have been marked as containing JavaScript code
using the /JS key. Any parts of the code that have been
concealed into other non-code PDF objects are not relevant
at this stage, since they will be retrieved at runtime through
the appropriate API calls.

Having located the objects with the initial code to be ex-
ecuted, a crucial next step is to identify the entry point
of the code. This can be achieved by looking for objects
with specific declarations that denote immediate execution
of the object’s content, such as /OpenAction, /AA, /Names,
and others [9]. The code of these objects is placed at the very
bottom of the whole reconstructed code, so that it follows
any previous function or variable declarations.

Another important aspect of the code extraction phase is
the order in which the code fragments are arranged before
being loaded on the JavaScript engine. For example, an at-
tacker can place a statement that assigns a variable with the
string representation of the shellcode in a PDF object, and
access that variable from code located in another object. If
the code of the second object (variable access) precedes the
code of the first object (variable definition), the JavaScript
interpreter will issue a reference error. In most cases, the
correct order of the code chunks can be inferred from the in-
herent ordering of the PDF objects in the file, and the chains
of indirect references. However, we also use some additional
heuristics to identify any use-before-declaration conditions,
and reorder the respective code chunks appropriately.

3.2 Code Execution and Shellcode Detection
Having extracted the embedded code, MDScan proceeds

into the dynamic analysis phase, in which the code is exe-
cuted on a JavaScript interpreter. In most malicious PDF
files, the goal of the JavaScript code is to trigger a vulner-
ability in the PDF viewer, and divert the normal execution
flow to the embedded shellcode. The shellcode can be ini-
tially concealed using multiple layers of encryption or trans-
formations, such as UTF-encoded characters, eval chains,
mapping tables, or other complex custom schemes. How-
ever, during execution, its actual binary code will eventu-
ally be revealed into a contiguous buffer referenced through
a JavaScript string variable [13,20].
Strings in JavaScript are immutable, and thus a modifica-

tion to an existing string results to the allocation of a new
memory buffer. This allows us to detect a PDF document
that contains malicious JavaScript code by scanning each
newly created string for the presence of shellcode—a benign
document would never execute JavaScript code that carries
any form of shellcode. To that end, we have instrumented
SpiderMonkey to scan the memory area of each allocated
string using Nemu [18], a shellcode detector based on binary
code emulation. The runtime heuristics of Nemu can iden-
tify the most widely used types of Windows shellcode, in-
cluding egg-hunt shellcode [18], which has been widely used
in malicious PDFs [27].
Our approach is analogous to the one used by Egele et

al. [13] for the detection of drive-by download attacks. In
their system, the JavaScript engine of Mozilla Firefox has
been instrumented to detect the presence of shellcode dur-
ing the execution of malicious scripts embedded in rogue
web pages. Unfortunately, we cannot directly modify the
JavaScript engine of Adobe Reader since its source code is
not available. An alternative approach would be to inter-
cept the routines of the memory allocator used by Acrobat
Reader through library interposition, and scan each newly
allocated buffer, similarly to the design of Nozzle [20]. An
advantage of this technique is that it eliminates the need for
custom document parsing, data and code extraction, and
emulation of the JavaScript for Acrobat API.
However, we have designed MDScan with the aim to be

used as a standalone PDF scanner, and not as a protection
enhancement for existing PDF viewers. This allows MDScan
to be easily embedded as an additional detection component
in existing intrusion detection systems, virus scanners, or
proxy servers. In contrast, a detector integrated with the ac-
tual PDF viewer application, in the same spirit as the above
browser-embedded systems [13,20], cannot be easily used as
a standalone component. Indeed, this would at least require
a fully-blown virtual machine running Windows to host the
instrumented viewer, and the viewer should be restarted for
every input file. In fact, this design is being used by mali-
cious code analysis systems like CWSandbox [16,25], which
can provide a detailed analysis of the actions and OS-wide
side effects of malicious PDF files.

4. EXPERIMENTAL EVALUATION
In this section we present the results of the experimental

evaluation of our prototype implementation. First, we eval-
uate the detection effectiveness of MDScan using real PDF
samples. We then evaluate the overall processing through-
put, as well as the individual overhead of each analysis phase.

Number of malicious PDF files

0 25 50 75 100 125 150 175 200

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
A

V
s

0

0.2

0.4

0.6

0.8

1

Figure 4: Cumulative fraction of the virus scanners
of VirusTotal that detected a set of 197 malicious
PDF samples.

Malicious PDF samples

s1 s2 s3 s4 s5 s6 s7 s8 s9
N

u
m

b
e
r

o
f
A

V
s

0

10

20

30

40

Original samples

Added JS obfuscation

Added PDF obfuscation

Figure 5: Number of virus scanners (out of 41) of
VirusTotal that detected obfuscated versions of ma-
licious PDF files generated using Metasploit.

For our experiments, we used a diverse set of 197 malicious
documents gathered from public malware repositories and
malicious websites [2–5], as well as from individual sources.
The above set also includes nine samples generated using
the nine different PDF exploit modules of the Metasploit
Framework [6]. We also used a set of 2,000 randomly chosen
benign PDF files that we found through Google.

4.1 Detection Effectiveness
We began our evaluation by testing the detection effective-

ness of MDScan using real malicious PDF samples. From the
197 malicious files, MDScan successfully detected 176 (89%).
From the files that were not detected, 15 did not attempt to
exploit any arbitrary code execution vulnerability, but re-
lied other features such as /Launch and /URI, as discussed
in Sec. 2. We plan to extend the PDF parsing module to de-
tect these types of attacks by checking the extracted objects
for the relevant keywords. The remaining six samples were
not detected due to faults during the parsing phase, which
we have been investigating.

For comparison, we submitted all samples to VirusTo-
tal [7] and retrieved the results from 41 antivirus engines
(AVs), which we have plotted in Fig. 4. About half of the
samples were detected only by half or less of the AVs, while
24 samples were detected by 20% or less. Even for the most
detectable samples, there were about 20% or more of the AVs
that did not detect them. We also submitted all samples to
Wepawet [11, 15], which reported 119 files as malicious, 16
as suspicious, 58 as benign, while four resulted to error.

Processing time (sec)

0 5 10 15 20 25

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
P

D
F

 f
ile

s

0

0.2

0.4

0.6

0.8

1

Benign

Malicious

Figure 6: Cumulative distribution of the processing
time for malicious and benign PDF samples.

To test further the effectiveness of existing antivirus sys-
tems against PDF threats, we created variants of the nine
Metasploit samples by applying additional obfuscation tech-
niques. The first derived set was generated by obfuscating
the JavaScript code of the original samples using a publicly
available code obfuscator [8]. The second set was generated
from the previous one by removing any PDF filter encod-
ings from the objects that contained JavaScript code. We
then treated the exposed JavaScript code in each object as a
string, and encoded it using its hexadecimal representation.
As shown in Fig. 5, in most cases the original Metasploit

samples were detected by less than half of the AVs. The
additional obfuscation applied in the samples of the other
two sets reduced the detection rate significantly, with only
ten or less of the AVs detecting the malicious files in the third
set. The only exception is the sample number three, which
is detected by almost the same number of AVs irrespectively
of the applied obfuscation, due to the inclusion of encrypted
mediabox objects that were not altered by our modifications.
MDScan successfully detected all 27 samples.
Finally, we tested MDScan for false positives using the

set of benign files. After verifying that all 2,000 files were
reported as benign by all AVs of VirusTotal, we scanned
them using MDScan, which did not misclassify any of them.

4.2 Runtime Performance
We measured the processing time of MDScan for both

malicious and benign samples. We repeated each experiment
ten times and report the average values. Figure 6 shows
the distribution of the processing time for all samples in
our two datasets, and Fig. 7 shows the breakdown of the
average scanning time for the two sets. As expected, most
of the processing time for malicious PDF files is spent on
the emulation of the JavaScript code, which is a much more
CPU-intensive operation compared to file parsing and code
extraction. The average processing time for malicious inputs
is just less than three seconds, with about half of the files
being scanned in less than one second.
The average processing time for benign PDF files is 1.5s,

with about 80% of the files being scanned in less than one
second. In contrast to the malicious files, the amount of
time spent on code execution is negligible, since only a small
fraction of files contain JavaScript code. Instead, due to the
very large size of some of the files, the time spent on parsing
and analysis of the PDF objects in each file is significant.

Processing time (sec)

0 0.5 1 1.5 2 2.5 3

Benign

Malicious

Parsing

Code extraction

Code execution

Figure 7: Average processing time for malicious and
benign samples.

5. LIMITATIONS
The JavaScript for Acrobat API exposes an extensive set

of features through numerous API calls. Clearly, our ap-
proach of emulating the functionality of the various API
calls found in malicious PDFs will not scale well if attack-
ers start to use a much broader range of API calls in their
code. Furthermore, the complexity of implementing some
of the calls might be prohibitive. Still, MDScan would be
useful as a first-level detector, and can easily be extended
to offload the analysis of PDF files that use unsupported
API calls to a fully-blown dynamic analysis system such as
Wepawet [11,15] or CWSandbox [16,25].

Another advantage of MDScan compared to VM-based
systems is that it is agnostic about the particular vulnera-
bility that a malicious PDF may exploit. This is important
for exploits that are effective against only specific versions
of the PDF viewer application. In such cases, a VM-based
analysis system may not observe the actual malicious be-
havior of the embedded code simply because it does not use
the appropriate PDF viewer version.

Currently, MDScan detects only malicious PDFs that ex-
ploit vulnerabilities in the PDF viewer. As part of our future
work, we plan to extend our system to detect other types
of malicious activity, such as startup actions though fea-
tures like /Launch and /URI, or embedded malicious Flash
files [14]. Such attacks can be easily identified at the parsing
phase by analyzing the extracted PDF objects.

Finally, an attacker could exploit idiosyncrasies of the
PDF viewer’s JavaScript engine that may not be exhib-
ited by the interpreter used in MDScan. For example, the
JavaScript engine of Adobe Reader does not allow the type
of defined global variables to be changed on subsequent as-
signments, a behavior not common among other JavaScript
engines [19, 26]. Any other similar deviations in the behav-
ior of Adobe Reader’s interpreter should be emulated by the
JavaScript engine of the detector.

6. RELATED WORK
The proliferation of PDF threats has resulted to many

efforts on the manual and automated analysis of malicious
PDF files. Researchers have been constantly analyzing and
discovering new obfuscation techniques and tricks being used
in recently discovered PDF malware samples [9, 10, 14, 21,
24, 26, 27]. Tools and frameworks like Origami [21] and
PDF Tools [23] help researchers to parse and analyze ma-
licious PDF files. Dynamic malware analysis systems like
Wepawet [11,15] and CWSandbox [16,25] can provide a de-
tailed analysis of PDF malware, including the actions of the
malicious code after successful exploitation.

Nozzle [20] detects heap-spraying attacks mounted by ma-

licious web sites against browsers. Using library interposi-
tion, Nozzle monitors the frequency of the calls to the mem-
ory allocator’s routines and also analyzes the contents of the
allocated areas for the presence of binary code. Given that
heap-spraying is also frequently used in malicious PDFs,
Nozzle can also potentially detect a malicious PDF when
rendered within the browser However, more stealthy heap-
spraying can evade this detection approach [12]. Egele et
al. [13] also propose a system for the detection of attacks
that use malicious JavaScript code against the browser. As
in MDscan, the malicious code is identified by instrument-
ing the JavaScript interpreter of Mozilla Firefox to detect
the presence of shellcode that is revealed during execution
in the address space of the interpreter.

7. CONCLUSION
Malicious PDF files remain an important threat, requir-

ing effective and robust detection mechanisms. As we have
demonstrated, the effectiveness of existing antivirus systems
against malicious PDF files is quite modest, given that in
most cases the samples were well known and quite old, and
at the same time is highly affected by the application of
simple obfuscation techniques.
MDScan is not affected by JavaScript code obfuscation,

and is robust against most of the known obfuscation tech-
niques based on intricacies of the PDF format specification.
At the same time, it does not rely on any specific vulnera-
bility or exploit features, which allows the detection of pre-
viously unknown threats. Combined with its standalone de-
sign, we believe that these features make MDScan an effec-
tive detection component for larger network or host-level at-
tack detection systems. However, due to its emulation of the
JavaScript for Acrobat API, MDScan will probably need to
be combined with VM-based analysis systems in case PDF
threats start to employ more advanced or diverse API calls.

Acknowledgments

This work was supported in part by the FP7-PEOPLE-2009-IOF

project MALCODE and the FP7 project SysSec, funded by the

European Commission under Grant Agreements No. 254116 and

No. 257007, and by the project i-Code, funded by the Preven-

tion, Preparedness and Consequence Management of Terrorism

and other Security-related Risks Programme of the European

Commission—Directorate-General for Home Affairs under Grant

Agreement No. JLS/2009/CIPS/AG/C2-050. This publication

reflects the views only of the authors, and the Commission can-

not be held responsible for any use which may be made of the

information contained herein. Zacharias Tzermias and Evangelos

Markatos are also with the University of Crete.

8. REFERENCES
[1] http://www.mozilla.org/js/spidermonkey/.

[2] http://www.blade-defender.org/.

[3] http://www.malwaredomainlist.com/.

[4] http://www.offensivecomputing.net/.

[5] http://contagiodump.blogspot.com/.

[6] http://www.metasploit.com/.

[7] http://www.virustotal.com/.

[8] http://www.javascriptobfuscator.com/.

[9] 4 ways to die opening a PDF, 2009. http://esec-lab.
sogeti.com/dotclear/index.php?post/2009/06/26/

68-at-least-4-ways-to-die-opening-a-pdf.

[10] M. Cova. Malicious PDF trick: XFA. http://www.cs.
bham.ac.uk/~covam/blog/pdf/.

[11] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious
javascript code. In Proceedings of the 19th
International World Wide Web Conference (WWW),
2010.

[12] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou.
Heap taichi: exploiting memory allocation granularity
in heap-spraying attacks. In Proceedings of the 26th
Annual Computer Security Applications Conference
(ACSAC), 2010.

[13] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda.
Defending browsers against drive-by downloads:
Mitigating heap-spraying code injection attacks. In
Proceedings of the 6th international conference on
Detection of Intrusions and Malware, & Vulnerability
Assessment (DIMVA), 2009.

[14] E. Filiol. New viral threats of PDF language. Black
Hat Europe, March 2008.

[15] S. Ford, M. Cova, C. Kruegel, and G. Vigna.
Wepawet. http://wepawet.cs.ucsb.edu/.

[16] T. Holz. Analyzing malicious pdf files, 2009. http://
honeyblog.org/archives/

12-Analyzing-Malicious-PDF-Files.html.

[17] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and
A. D. Keromytis. A study of malcode-bearing
documents. In Proceedings of the 4th international
conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), 2007.

[18] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Comprehensive shellcode detection using
runtime heuristics. In Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC),
December 2010.

[19] S. Porst. How to really obfuscate your PDF malware.
RECON, July 2010.

[20] P. Ratanaworabhan, B. Livshits, and B. Zorn.
NOZZLE: A defense against heap-spraying code
injection attacks. In Proceedings of the 18th USENIX
Security Symposium, Aug. 2009.

[21] F. Raynal, G. Delugré, and D. Aumaitre. Malicious
origami in pdf. J. Comput. Virol., 6(4):289–315,
November 2010.

[22] K. Selvaraj and N. F. Gutierres. The rise of PDF
malware, 2010. http://www.symantec.com/connect/
blogs/rise-pdf-malware.

[23] D. Stevens. PDF tools. http://blog.didierstevens.
com/programs/pdf-tools/.

[24] D. Stevens. Malicious PDF documents explained.
IEEE Security and Privacy, 9(1):80–82, 2011.

[25] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
CWSandbox. IEEE Security and Privacy, 5(2):32–39,
2007.

[26] J. Wolf. OMG WTF PDF. 27th Chaos
Communication Congress (27C3), December 2010.

[27] B. Zdrnja. Sophisticated, targeted malicious pdf
documents exploiting cve-2009-4324, 2010. http://
isc.sans.edu/diary.html?storyid=7867.

http://www.mozilla.org/js/spidermonkey/
http://www.blade-defender.org/
http://www.malwaredomainlist.com/
http://www.offensivecomputing.net/
http://contagiodump.blogspot.com/
http://www.metasploit.com/
http://www.virustotal.com/
http://www.javascriptobfuscator.com/
http://esec-lab.sogeti.com/dotclear/index.php?post/2009/06/26/68-at-least-4-ways-to-die-opening-a-pdf
http://esec-lab.sogeti.com/dotclear/index.php?post/2009/06/26/68-at-least-4-ways-to-die-opening-a-pdf
http://esec-lab.sogeti.com/dotclear/index.php?post/2009/06/26/68-at-least-4-ways-to-die-opening-a-pdf
http://www.cs.bham.ac.uk/~covam/blog/pdf/
http://www.cs.bham.ac.uk/~covam/blog/pdf/
http://wepawet.cs.ucsb.edu/
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://www.symantec.com/connect/blogs/rise-pdf-malware
http://www.symantec.com/connect/blogs/rise-pdf-malware
http://blog.didierstevens.com/programs/pdf-tools/
http://blog.didierstevens.com/programs/pdf-tools/
http://isc.sans.edu/diary.html?storyid=7867
http://isc.sans.edu/diary.html?storyid=7867

	Introduction
	Background
	Design and Implementation
	Document Analysis
	File Parsing
	Emulation of the JavaScript for Acrobat API
	JavaScript Code Extraction

	Code Execution and Shellcode Detection

	Experimental Evaluation
	Detection Effectiveness
	Runtime Performance

	Limitations
	Related Work
	Conclusion
	References

