
Outsourcing Malicious Infrastructure to the Cloud

Georgios Kontaxis, Iasonas Polakis, Sotiris Ioannidis
Institute of Computer Science

Foundation for Research and Technology Hellas
{kondax, polakis, sotiris}@ics.forth.gr

Abstract—Malicious activities, such as running botnets,
phishing sites or keyloggers, require an underlying infrastruc-
ture for carrying out vital operations like hosting coordination
mechanisms or storing stolen information. In the past, attackers
have used their own resources or compromised machines.

In this paper, we discuss the emerging practice of attackers
outsourcing their malicious infrastructure to the Cloud. We
present our findings from the study of the first major keylogger
that has employed Pastebin for storing stolen information.
Furthermore, we outline the traits and features of Cloud
services in facilitating malicious activities. Finally, we discuss
how the nature of the Cloud may shape future security
monitoring and enhance defenses against such practices.

I. INTRODUCTION

Malicious activities, such as running botnets, phishing
sites or keyloggers, require an underlying infrastructure
for carrying out vital operations like hosting coordination
mechanisms or storing collected information. In the past,
attackers have used their own resources or compromised
machines to store stolen user information (from keyloggers
or phishing schemes) or coordinate their activities (issue new
orders, push updates, etc) as in the case of botnets. Both
cases entail disadvantages for the attackers. In the first case,
their actions can be traced back to them. In the second case,
the infrastructure is not reliable as compromised servers can
be identified and patched.

In this paper, we highlight the emerging practice of
attackers outsourcing their malicious infrastructure to the
Cloud. In other words, we discuss a new trend on the
Internet where attackers switch from IRC channels to Twitter
accounts for coordinating their botnets and from private FTP
sites to public user-content hosting sites such as Pastebin. We
present the findings from our study of the first major keylog-
ger that has employed Pastebin to upload stolen information.
Furthermore, we analyze the nature of Cloud services in
respect to the needs of attackers. Finally, we discuss how
such shift towards Cloud-based infrastructure may shape
future security monitoring and defense mechanisms.

The contributions of this paper are the following:
• We present a study on the first major case of a key-

logger using Pastebin to upload its stolen information.
To the best of our knowledge, this is the first study
concerning the use of public content-sharing sites as
malicious dropzones.

• We discuss the nature of Pastebin-like sites and present
scenarios where their features can be employed by
malware to coordinate their actions and store informa-
tion. We also provide proof that attackers are already
discussing and developing techniques based on the,
sometimes unique, features of such Cloud services.

• We discuss the future of Pastebin-enabled keyloggers,
along with new ways that attackers can take advantage
of the Pastebin service to enhance other nefarious
activities, such as botnet coordination.

• We propose Cloud-oriented security methods for detect-
ing and monitoring this new generation of malware.

II. RELATED

Security researchers at Kasperky Labs [1] report that there
is an increasing trend for botnets to move their command
and control channels away from IRC and into the Web. They
claim that the number of HTTP-based coordination channels
outnumbers the IRC servers by a factor of 10 to 1, as a result
of monitoring and aggressive action against the latter.

Authors in [2] acknowledge and study the trend of botnet
command and control services evolving from traditional
IRC-based approaches to the Web and, specifically, to social-
networking sites such as Twitter. Furthermore, they point out
the irony of attackers hiding their infrastructure in plain sight
in popular Web sites so as to improve the unobservability
of their operations.

Symantec in [3] and also security researchers in [4]
discuss the nature of a new type of malware that employs
Twitter as part of its command and control infrastructure. In
detail, the malware accesses the public timeline of messages
(tweets) of a specific Twitter account that contains base64-
encoded strings. These strings contain URLs to pastebin-
like sites that in turn carry DLL and executable files also in
base64-encoded form.

A technical report by Balatzar et al. [5] exposes the Web
2.0 orientation of a new generation of malware with social
network propagation components and an infrastructure, from
command and control services to malware repositories and
storage of stolen information, entirely over HTTP applica-
tions.

In 2009, 10K Hotmail passwords were leaked [6] to the
Web via public uploads to Pastebin.com. In 2010, 10K credit
card numbers were also leaked [7] on the same service.



In 2010, the use of Pastebin and similar sites has been
suggested [8] as a way for criminals to anonymously store,
exchange or even advertise samples of stolen information,
with little or no risk of liability.

Holz et al. in [9] perform dynamic analysis of malicious
software (e.g. keyloggers) in an automated fashion. Their
goal is to discover online repositories that each malware
uses to upload stolen information. Furthermore, they analyze
the nature and content of the stolen data, thus providing an
insight into the back-end of such underground operations.
Their investigation of popular keyloggers has led them
to privately-owned or compromised Internet servers that
execute attacker-provided scripts (e.g. PHP) to implement
the necessary functionality for storing and managing the
stolen information.

Our work focuses on the emerging trend of keyloggers and
other malicious software employing inherent functionality of
public Cloud services, such as user-content-hosting.

III. BACKGROUND

In this section, we outline the generic behavior of key-
logging malware (keyloggers) and also introduce the basic
features of the Pastebin service.

A. Keyloggers

A keylogger is a piece of computer code, usually pack-
aged as a stealth program, that records all keys struck on a
keyboard. It falls in the category of malicious software as
it is often employed for stealing sensitive user information,
such as passwords or financial information, as the owner
types them (e.g., while logging in a service or making
an online purchase). Keyloggers may simply record all
key strokes or be more sophisticated and capture keyboard
activity right after a predefined sequence of keystrokes (e.g.,
after the user types mybank.com, presumably in the Web
browser’s address bar). Subsequently, keyloggers place the
captured information in a log file and upload it to an online
location (or dropzone) accessible by the attacker. Sophisti-
cated keyloggers present data in a structured form, perhaps
identifying URLs (“http” or “www” strings) and grouping
keystrokes accordingly. Simpler tools provide access to a
chaotic stream of keystrokes for the attacker to extract useful
information from.

B. Pastebin

Pastebin sites were originally conceived as clipboard-like
collaboration places where developers could conveniently
share source code, logs and other text-based content without
having to worry too much about the original formatting
getting corrupted or other problems associated with trying
to share structured text over e-mail or instant messaging
applications. A registered account is not required. One may
use the service to upload (or paste) arbitrary blocks of text
online and receive a URL (pointer) to that content. He

may then share that URL with their colleagues or friends
or keep it private for personal use. Returned URLs are
of the form http://pastebin.com/〈ID〉, where the ID appears
to be random, perhaps the product of a hash function.
The lifetime of such content is user-defined and may vary
between 10 minutes to 1 hour, 1 day, 1 month or for
ever. Due to the service’s orientation towards developer,
it offers syntax highlighting. By default, pasted content
offers no syntax highlighting, never expires, is public and
carries no identifying title or username (anonymous). All
public pastes appear in a “recent posts” timeline and can
therefore be accessed by anyone. Crawling the keyspace of
Pastebin IDs is not an option as the space is quite large
(7-8 characters long, [A-Za-z0-9]) and randomly populated.
Finally, an interesting feature of Pastebin is the support for
arbitrary subdomains. Any guest of the service may type
http://〈anything〉.pastebin.com and will be presented with a
valid view of the service. Any pastes created under that
arbitrary subdomain are not referenced by http://pastebin.
com/〈ID〉 but by http://〈anything〉.pastebin.com/〈ID〉 and for
that matter do not appear in the public timeline. To access
such content, one requires both the random ID and the
domain prefix.

IV. THE PASTEBIN INCIDENT

In this section we present, to the best of our knowledge,
the first major case of a keylogger using Pastebin (or any
other Cloud service for that matter) to upload its stolen
information. We introduce the timeline of events, provide
technical details regarding our efforts to capture and study
the incident and, finally, share the outcome of our analysis
regarding the nature of the malware.

In May 2010 a large number of entries, containing raw
streams of what appeared to be keystrokes, began appearing
on Pastebin. The presence of lists of usernames and pass-
words is not new to the service, but this specific type of
entries quickly became a trend while constantly increasing in
volume and ended up dominating the content being uploaded
to the service during that period of time.

Pastes that fell in this category carried the same set of
characteristics: anonymous entries, with no syntax highlight-
ing or specific internal structure, comprised of “[ ]” blocks
carrying what appeared to be titles of Web browser windows
(e.g., “Internet Explorer - Facebook.com” or “Mozilla Fire-
fox - Hotmail.com”), followed by a stream of keystrokes.
Their frequency was so high that they dominated, almost
completely, the “recent posts” list in the service’s homepage.

The overwhelming volume of such pastes caught our
attention and, at the same time, emerged as an issue in
security-related blogs [10], [11]. Their sudden appearance
and sudden increase in volume, indicated the launching of
a new keylogging tool that employed Pastebin to upload
the stolen information. We started to monitor this incident
and analyze its characteristics as it appeared to be the first



of its kind. The keylogging tool was later identified by
BitDefender 1 as Trojan.Keylogger.PBin.A.

A. Dataset Collection

In this section we outline our collection methodology
of keylogger data (or pastes) on Pastebin. Moreover, we
elaborate on the completeness of our collected trace and
discuss certain limitations of our approach.

Active Crawling. A straightforward crawl of all uploads
on Pastebin was not an option, so we resolved to a more
elegant solution. Pastebin uploads are assigned a random-
looking ID of the form http://pastebin.com/[0-9A-Za-z]+.
Since the ID distribution appears to be random, a simple
iteration over the available namespace would be inefficient
in terms of time. However, by default the last 8 pastes
created appear in a “recent posts” timeline on the homepage
of Pastebin. We periodically downloaded the list, parsed its
entries and fetched any pastes that we could attribute to
the output characteristics of the keylogger. By examining,
fast enough, the “recent posts” timeline, we were able to
gather all or almost all keylogger pastes as soon as they
were created.

We developed an infrastructure that periodically down-
loaded the “recent posts” timeline, examined it for entries
matching our search criteria and downloaded any pastes that
were determined to be a match. In detail, we downloaded
the homepage of Pastebin and parsed the entries present in
the recent timeline. Entries in that list contain the username
or title of the paste, along with a label describing its
content type (later used for syntax highlighting, e.g. C,
HTML, PHP). Furthermore, all entries are active hyperlinks
leading to the page of each paste. The pastes containing
keylogger output were created using default parameters, i.e.,
by an anonymous user and without a type specification. Our
infrastructure followed the hyperlinks for pastes matching
the default parameters, downloaded the respective pages and
performed regular expression string matching to identify
structural properties of the keylogger pastes. As mentioned
earlier, each keylogger paste had its streams of keys grouped
around lines of the format “[ <browser> - <window
title> ]” (e.g., “Internet Explorer - Facebook.com”). If the
downloaded pastes exhibited this kind of structure, they
were considered valid matches and kept for further analysis.
Otherwise, they were discarded.

To secure the completeness of our collection methodology
we took steps to ensure that our polling rate (periodic
download of the timeline) was fast enough to capture all
interesting pastes before they disappeared from the timeline
(during period of increased activity) and also not to frequent
so as to avoid stressing the service when not necessary.
In that light, each time we downloaded the timeline, we
calculated the dice coefficient of its entries with the one

1http://www.bitdefender.com/

downloaded previously. A dice coefficient above 0.75 meant
that 75% of the entries in the timeline had not changed since
the previous time we had downloaded the list; we considered
this as an indication that we were polling the service too fast
in a period where few uploads were made per second. In that
case, we slowed down our polling rate. On the other hand, a
dice coefficient of less than 0.25 meant that only 25% of the
entries in the timeline remained the same, which was fine,
meaning we had not missed any entries between our last
poll and the current one. But if a sudden burst of activity
occurred we could miss some entries. To avoid such a case,
we increased our polling rate. Overall, the average value of
the coefficient was 0.80, indicating a sufficient polling rate,
able to provide a complete keylogger data trace.

Time-machine Crawling. Our previous crawling method
allowed an efficient gathering of all subsequent pastes.
However, we also wanted to check if similar pastes had been
uploaded in the past, how long ago and plot their volume
as a function of time. For that matter, we employed the
advanced tools provided by the Google search engine. In
detail, Google Search allows one to search for a keyword
within a specific domain and also limit the query scope using
time constraints. To perform our backwards search we placed
a query similar to “site:pastebin.com <search heuristic>”
and limited the scope to one month at a time.

B. Limitations

As mentioned earlier, by default all pastes are created
as public and appear on the “recent posts” timeline. By
examining that timeline with a fast-enough rate, one may
compile a complete or near-complete set of the public pastes
created. Here we describe two cases where such an approach
may not be that effective.

A paste may be explicitly set to being private and there-
fore will never appear in the public timeline. Considering
that all pastes, public or private, are assigned random-
looking IDs, there is no way for a third party to discover
that paste other than guessing character sequences from a
very wide namespace.

Furthermore, the use of arbitrary subdomains also allows
the creation of pastes that do not appear on the service’s
homepage. Posts on those subdomains may still be public but
one would have to know the specific prefix before pastebin.
com to access their respective timeline.

We believe that, in this case study, such limitations did not
apply. However, as we discuss in Section V, future strings
of keyloggers could employ such techniques to hide their
presence from the public.

C. Analysis

Data Volume. Using our active (or forward) crawling
technique, we gathered an almost-complete set of all new
pastes that matched our heuristics regarding the content and
structure of the keylogger pastes. Figure 1 plots the volume



16Jun 01Jul 16Jul 31Jul 15Aug 30Aug 14Sep

# 
of

 S
us

pi
ci

ou
s 

P
as

te
s

0

5

10

15

20

Figure 1: Volume of PBin.A stolen information on Pastebin,
per hour. (Active Crawling)

15May 30May 14Jun 29Jun

# 
of

 S
us

pi
ci

ou
s 

P
as

te
s

0

5

10

15

20

Figure 2: Indexed Volume of PBin.A stolen information on
Pastebin, per hour. (Google Search)

of new pastes over a period of 4 months. A closer look
reveals diurnal patterns, an expected phenomenon attributed
to daylight cycles and user behavior which has been ex-
tensively documented in [12]. Moreover, there is a steady
decrease in volume, indicating that the shrinking presence
of this keylogger in infected computers.

Furthermore, we employed our backwards crawling tech-
nique and, using Google Search, calculated the volume
per day up to 6 months before the time we started the
active crawling. While we received search results for the
entire search period, pastes matching our heuristics began
appearing in May 2010, indicating that the appearance of
keylogger data on Pastebin was a new trend and we had
caught it almost as soon as it started. Figure 2 plots the
volume of pastes over time. There are no pastes before
May 19. Let there be noted that this figure presents the
Google-search indexed volume of Pastebin entries which
is essentially a sampled dataset. On the other hand, Figure
1 visualizes the almost complete set of pastes during our
period of active crawling.

Takedown Rate. During the first few days since key-
logger data started appearing in large volume on Pastebin,
the service claimed [11] that efforts were being made to
identify those entries and remove them. To verify that claim,
we periodically checked the availability of pastes collected
by our crawler. Figure 3 plots the cumulative volume of
available pastes over the period of our active crawling,
using a one day granularity. Since pastes were created using
default options and were set to never expire, we can attribute
any unavailability to takedown efforts. However, one may

21Jun 28Jun 05Jul

# 
of

 S
us

pi
ci

ou
s 

P
as

te
s

0
1000

2000

3000

4000

5000

6000

7000

up
down

Figure 3: Cumulative Volume of available and taken-down
PBin.A entries of stolen information on Pastebin, during the
middle of the activity period.

02Sep 17Sep 02Oct

# 
of

 S
us

pi
ci

ou
s 

P
as

te
s

0
1000

2000

3000

4000

5000

6000

7000

up
down

Figure 4: Cumulative plot of available and taken-down
PBin.A entries of stolen information Pastebin, after the
malware had almost ceased its operation.

see that efforts were not sufficient in identifying existing
data or keep up with the rate of new data being uploaded.
Moreover, in September 2010, almost a month after the
data uploading activities of the keylogger had nearly ceased,
the stolen information still remained online and, apparently,
takedown efforts had completely ceased. (Figure 4).

D. Strings Identified

Although our analysis heuristics were strict, ensuring that
the set of pastes were indeed part of the keylogger output,
our crawling heuristics were pretty relaxed, resulting in more
than one different strings of keyloggers being identified by
their output. Besides the primary keylogger string being
analyzed here, the rest were also interesting in terms of
data. One batch of entries contained a URL and clearly
marked “username” and “password” fields indicating that
the keylogger was context-aware and was able to extract
only the necessary information. Also, some other batches
were site-exclusive and contained usernames and passwords,
each one for a specific site indicating the presence of very
particular keyloggers.

E. Information Gathered

We closely examined the stolen information being up-
loaded to Pastebin by the keylogger. Figure 5 presents
a screenshot of an example entry. As one may notice,
while the content is structured to group recorded keys by
the application window in which they were recorded, the
malware does not attempt to identify or organize the stolen



Figure 5: Screenshot of a Pastebin entry containing stolen
information by Keylogger PBin.A.

information in any way. As a result, the uploaded entries
were a chaotic stream of recorded keyboard keys. We noticed
that most keys were recorded twice, indicating perhaps a bug
in the keylogger’s implementation or an excessive polling
rate for keyboard events, such that it recorded almost each
event twice. The next question was whether the keylogger
uploaded stolen information in fixed-size batches. Thus, we
studied the size distribution of the entries the malware up-
loaded on Pastebin. Figure 6 demonstrates that the malware
does not operate on a fixed-number-of-bytes basis but rather
employs a time frame after which any stolen information is
uploaded. Let it be noted that the average size of an entry
was 6 KBytes and the median was 1 KByte.

The next step was to attempt the reconstruction of the data
using the following automated methodology: we treated each
entry (paste) as standalone and grouped the streams of keys
by their respective title in the application window, contained
inside clearly marked blocks “[ ]”. This resulted in a con-
catenated stream of keys per application window, for every
uploaded entry. We removed duplicate keys, i.e. identical
characters adjacent to each other but only in the cases where
such combinations did not exist in the English language.
We removed special keys such as <BACK> (backspace). We
tokenized the stream using spaces as a delimiter and looked
up the resulting words in a dictionary. For words not found,
we looked them up in Google search and leveraged the “did
you mean” or “search instead” feature of the search engine
to resolve them. Finally, we ended up with a pretty much
readable transcript of the user’s input. Overall, we extracted
hundreds of URLs, usernames, passwords, e-mail addresses
and Instant Messenger conversations.

F. Correlation with Traditional Keyloggers

A subset of the stolen information entries contained the IP
addresses of the respective infected computers. To investi-
gate a possible correlation with hosts infected by traditional

% of Stolen Information Entries on Pastebin.com

0 10 20 30 40 50 60 70 80 90 100

by
te

s

10
100

1K

10K

100K

1M

10M

Figure 6: Distribution of stolen-data batches in terms of size.

IP Address Range

0.0.0.0 50.0.0.0 100.0.0.0 150.0.0.0 200.0.0.0 250.0.0.0

V
ic

tim
s 

(a
cc

um
ul

at
ed

)

0
500

1000

1500

2000

2500

3000

3500

Figure 7: Cumulative distribution of keylogger victims
across the IP address space.

keyloggers, we plotted (Figure 7) the cumulative distribution
of victims across the IP address space. Interestingly, the most
dense IP address range matches similar ranges found also
by Holz et al. [9] when studying traditional keylogger data,
which also match ranges of host computers known to be
infected with malware such as the ZeuS botnet.

V. OUTSOURCING TO THE CLOUD

In this section we discuss the trend of outsourcing mali-
cious infrastructure to the Cloud. We present how attackers
may benefit from the nature of the Cloud and detail the use
of certain traits and features that may contribute to more
sophisticated types of malware.

A. Economics

Public Cloud services are very cheap or free to use. One
could consider examples from social networks such as Twit-
ter, or services like Pastebin and Rapidshare. Traditionally,
attackers had to maintain their own dedicated hardware and
network connectivity.

B. Reliability

Cloud services aim to provide reliable uptime service
for at least 99% of the time. Traditionally, attackers use
compromised computers of victims which can be shut down
or cleaned from infections. If that happens, the attacker will
lose all stored information (e.g. keylogger data) and may
also lose the command and control point which coordinates
the activities.



Figure 8: Twitter profile being used to command and control
(C&C), pushing BASE64-encoded information.

C. Scalability

Cloud services are designed to scale in terms of storage,
processing power or bandwidth. A private FTP site on
a compromised server may run out of space, while an
infected host acting as a command and control point may
be overwhelmed by the number of network connections.

D. Unobservability

Cloud services offer practical anonymity. Traditionally,
stolen information is transmitted directly back to the attacker
or to a compromised system under his control. At the same
time, malware in need of coordination (e.g. botnets) contacts
an attacker-provided exchange point. An attacker employing
his own resources to support the back-end infrastructure can
be traced, identified and prosecuted. There is always the
option of using a random compromised PC for that purpose
but, as mentioned earlier, this may sacrifice reliability. On
the other hand, infected victims employing the Cloud for
malicious activities, does not differ from a large population
of users using the Cloud for benign purposes. For instance,
bots uploading stolen information on Pastebin blend in with
a plethora of users sharing source code or arbitrary text
on a daily basis. Moreover, in the Cloud it is much harder
for a prosecuting authority to retrieve user records from an
international service.

E. Plausible Deniability

An attacker contacting a compromised system or a private
dropzone can be traced and charged with malicious activity.
As no legitimate user will ever contact an infected worksta-
tion on a random TCP port bound by a backdoor, anyone
who connects is probably malicious and his IP address can
be used to identify him. For instance, a discovered dropzone
employed by a keylogger may be kept online by security
researchers to find out who will come and collect the stolen
information. When this happens, it will be very hard for the

attacker to deny his actions. On the other hand, an attacker
using the Cloud to download stolen information does not
differ from a plethora of other users using the Cloud for
benign purposes. Moreover, he is able to create enough
noise so that he cannot be tied beyond any doubt with
malicious activity. For instance, one may visit all new entries
on Pastebin, keep the ones uploaded by his keylogger and
discard all the rest. Such activity will not be any different
from, for example, our crawler presented in the previous
section.

F. Unique Features and Flexibility

The Cloud offers a certain amount of flexibility in the use
of the services it provides and a series of unique features
that would otherwise be unavailable to the attacker. Here
we discuss more sophisticated methods for storing keylogger
data on Pastebin, along with other ways that the service’s
features can be leveraged for serving nefarious purposes,
such as supporting botnets.

Sophisticated Keylogger Pastes. During our work on
this paper, we have discovered discussions in underground
forums of the security community, dating back to the
beginning of 2010, exploring sophisticated ways of plac-
ing keylogger data on Pastebin and similar services. For
instance, in a well known underground hacking forum,
there is a discussion about using the arbitrary subdomain
feature of Pastebin to create highly-dynamic private areas
for uploading data. As mentioned earlier, any URL of the
form http://foo.pastebin.com will produce a valid service
page and any data uploaded through that page will not
appear under the public home page of the service but under
the new subdomain. Therefore one has to know “foo” in
order to access that area and parse the “recent posts” list.
The forum discussion suggests this technique as a way of
uploading keylogger data without being noticed, contrary
to the incident presented in this paper. Furthermore, they
also suggest that this private subdomain should change
frequently to avoid detection or prevent access to the entire
set of uploaded data if the private URL is discovered.
Their approach for the keylogger to discover the private
subdomain, prior to uploading its data, is to poll an external
Web page, that will act as a coordination point. However,
one could implement a function that generates a subdomain
string, using the current time and day or week or month,
similar to traditional domain flux techniques employed by
botnets [13]. This way no coordination point is required and
the attacker remains in sync with the current Pastebin private
area at all times.

Private C&C Pastes. In the same underground forum,
one may read on employing Pastebin as a coordination point
(Command and Control or C&C) for traditional botnets.
The idea is to hide the address of the coordination point or
change it continuously so to minimize damage if its current
location is discovered. Furthermore, any pastes created will



1 Function UploadtoPastBin(ByVal text As String)
2 Dim wc As New Net.WebClient
3 Dim pl As String = "paste_code=" & text
4 Return System.Text.Encoding.ASCII.GetString(
5 wc.UploadData("http://pastebin.com/api_public.php",
6 "POST", System.Text.Encoding.ASCII.GetBytes(pl)))
7 End Function

Listing 1: VB.NET Source Code for uploading to
Pastebin.com Source

have a very small lifetime (minutes or hours) after which
they will expire and be removed from the service. In
detail, the discussion is about employing domain generation
algorithms and applying their output to form private Pastebin
subdomains. As mentioned in various posts, the creation
of such a subdomain is instant, while traditional domain
registration is expensive in terms of time, effort and money.

Overall, we believe that Pastebin is a very flexible service
and can be leveraged for various malicious actions. As a
matter of fact, in the same underground forum, Listing 1
was found in a Hacking forum titled “Post to PasteBin.com
Source (Good for keyloggers)”, a fact which indicates that
attackers are actively developing and sharing modules of
code to be used in malware.

VI. DISCUSSION

Here we discuss how the security community can re-
spond to this new generation of Cloud-supported malicious
software. In other words, the public nature of the Cloud
may present opportunities for security researchers to develop
novel methods for identifying malware that employ such
practices.

In general, free Cloud services are public. So far, we
have discussed how attackers are able to, essentially, upload
information to the Cloud in a practically anonymous fashion,
and later access it to facilitate information exchange. The
public nature of such services results in their content being
indexed by search engines and cached. Therefore, it is
easy for anyone, besides the attackers themselves, to locate
and access information even if it has been removed from
the original site, e.g. deleted by the attackers or taken
down by the site’s administrators. Moreover, malware, for
instance botnets, usually targets a large number of victims.
As a result, their large-volume output on the Cloud will be
detected in a site like Twitter or Pastebin.

Traditional security practices inspect the input of malware
to identify it and take measures against it. Such input
includes inbound network behavior (e.g. network scanning
or packet signatures) or malicious executables on PCs.
However, lately a large portion of attacks has moved inside
the user’s Web browser. As a result, it is invisible at the
network level, bypasses firewalls and intrusion detection
systems. We propose the use of malware output in the Cloud
(e.g. Twitter, Pastebin, etc.) as a heuristic for detecting and

tracking new and emerging threats. For instance, we could
monitor Twitter for a new botnet’s command and control
messages, and keylogger data or general information leakage
on Pastebin.

Anomaly Detection on Cloud Services. Certain services,
such as Twitter and Google search, employ heuristics to
prevent abuse of their resources from automated scripts.
Pastebin also intends to implement similar behavior. Such
practice can be extended to form anomaly detection systems
that not only block certain users from accessing the service,
but also produce alerts or signatures for emerging automated
activities. For instance, the appearance of a large number of
IP and e-mail addresses in Pastebin entries, or other popular
user-content hosting sites, can be detected and the victims
be warned. Another example is the inspection of the indexed
portions of malicious infrastructure. In detail, one can search
the Web via popular search engines for certain keywords that
will reveal lists of passwords or other sensitive information
and perhaps investigate their replication across multiple sites
on the Web.

Global View of the Attacks - Warning System. Tra-
ditional security practices require a plethora of distributed
network monitors or sensors in order to acquire an accurate
view of the attacks on a global scale. By monitoring the
output of malware on the Cloud, one needs only a single
point of observation in order to be able to inspect instances
of malicious infrastructure on the Internet.

VII. CONCLUSION

In this paper we have focused on an emerging practice of
attackers; outsourcing the infrastructure required to support
their malicious acts to the Cloud. We present an empirical
study on the first major usage of a Cloud service, Pastebin,
by a keylogger for storing stolen information. We evaluate
this trend by analyzing the nature of Cloud services in terms
of facilitating the requirements of attackers and present the
benefits of the Cloud along with unique features that provide
new capabilities to the attackers and increase the efficiency
of past practices. Finally, we discuss how a shift towards the
Cloud may shape security monitoring practices, and propose
countermeasures for such malicious activities.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement 257007. This work
was supported in part by the Marie Curie Actions – Rein-
tegration Grants project PASS. We thank the anonymous
reviewers for their valuable comments. Georgios Kontaxis,
Iasonas Polakis and Sotiris Ioannidis are also with the
University of Crete.



REFERENCES

[1] “Kaspersky labs report: Irc botnets dying...
but not dead,” http://threatpost.com/en us/blogs/
report-irc-botnets-dyingbut-not-dead-111610.

[2] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu, “So-
cial network-based botnet command-and-control: emerging
threats and countermeasures,” in Proceedings of the 8th in-
ternational conference on Applied cryptography and network
security, 2010.

[3] “Symantec - Official Blog: Twitter + Pastebin =
Malware Update,” http://www.symantec.com/connect/
blogs/twitter-pastebin-malware-update.

[4] “Arbor Networks - Twitter-based Botnet Command Chan-
nel by Jose Nazario,” http://asert.arbornetworks.com/2009/08/
twitter-based-botnet-command-channel/.

[5] “The Real Face of KOOBFACE: The Largest Web
2.0 Botnet Explained,” http://blog.trendmicro.com/
the-real-face-of-koobface/.

[6] “10,000 Hotmail passwords mysteriously leaked to the web,”
http://www.theregister.co.uk/2009/10/05/hotmail passwords
leaked/.

[7] “Mybanktracker - mastercard credit card numbers leaked
by wikileaks supporters,” http://www.mybanktracker.com/
bank-news/2010/12/08/mastercard-credit-card-numbers/.

[8] “A Treasury of Dumps,” http://blog.damballa.com/?p=695.

[9] T. Holz, M. Engelberth, and F. C. Freiling, “Learning more
about the underground economy: A case-study of keyloggers
and dropzones,” in ESORICS, 2009.

[10] “Malware City Blog - Keyloggers Posting on
Webpages,” http://www.malwarecity.com/blog/
keyloggers-posting-on-webpages-831.html.

[11] “Krebs on Security Blog - Cloud Keyloggers?” http://
krebsonsecurity.com/2010/06/cloud-keyloggers/.

[12] D. Dagon, C. C. Zou, and W. Lee, “Modeling botnet propa-
gation using time zones,” in NDSS, 2006.

[13] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet
is my botnet: analysis of a botnet takeover,” in Proceedings of
the 16th ACM conference on Computer and communications
security, 2009.


