
A Fast Eavesdropping Attack Against Touchscreens
Federico Maggi
Alberto Volpatto

Politecnico di Milano
{volpatto, fmaggi}@elet.polimi.it

Simone Gasparini
INRIA Grenoble–Rhone-Alpes

simone.gasparini@inria.fr

Giacomo Boracchi
Stefano Zanero

Politecnico di Milano
{boracchi, zanero}@elet.polimi.it

Abstract—The pervasiveness of mobile devices increases the
risk of exposing sensitive information on the go. In this paper, we
arise this concern by presenting an automatic attack against mod-
ern touchscreen keyboards. We demonstrate the attack against
the Apple iPhone—2010’s most popular touchscreen device—
although it can be adapted to other devices (e.g., Android) that
employ similar key-magnifying keyboards. Our attack processes
the stream of frames from a video camera (e.g., surveillance or
portable camera) and recognizes keystrokes online, in a fraction
of the time needed to perform the same task by direct observation
or offline analysis of a recorded video, which can be unfeasible for
large amount of data. Our attack detects, tracks, and rectifies
the target touchscreen, thus following the device or camera’s
movements and eliminating possible perspective distortions and
rotations In real-world settings, our attack can automatically
recognize up to 97.07 percent of the keystrokes (91.03 on average),
with 1.15 percent of errors (3.16 on average) at a speed ranging
from 37 to 51 keystrokes per minute.

I. INTRODUCTION
Since more and more people use mobile devices, there is an
increasing risk of inadvertently exposing sensitive information.
For instance, attackers may break into mobile devices by
exploiting vulnerabilities exposed via wireless links. Even when
digital attacks are ineffective, malefactors may closely follow
and observe the victim’s portable device or use recording
mechanisms and extract the target information. However, this
strategy is highly inefficient from an attacker’s viewpoint,
especially when the target information is time sensitive (e.g.,
onetime passwords) or ample (e.g., long emails).

We designed and implemented a practical, automatic attack
against touchscreen mobile devices. Through a quasi real-time
processing, our attack accurately recovers the sequence of
keystrokes input by the user. Balzarotti et al. proposed in [1]
an attack that, albeit limited to desktop scenarios, is similar
in spirit to ours; however, their approach relies on conditions
that well suit desktop scenarios (i.e., camera and mechanical
keyboard in relative fixed, perpendicular position) but prevent
its extension to mobile settings, which are characterized by
keyboard movements and skewed or rotated viewpoints. To the
best of our knowledge, our work is the very first attempt
to implement an automatic shoulder-surfing attack against
touchscreen mobile devices.

We designed our attack specifically for mobile scenarios
and dynamic conditions. In particular, it requires no specific
positioning of the spying camera nor of the target device as
it compensates the natural movements of both target device

This is a pre-print version, which is an exact replica of the original article,
except for the Acknowledgments section.

and attacker’s camera. This makes it suitable for “on the go”
applications. Our attack provides accurate text recognition,
without relying on any a priori knowledge or manual inter-
vention of the attacker. In particular, it does not implement
any grammar check, thus we can automatically recognize
context-free text or keystroke sequences not corresponding
to dictionary words (e.g., passwords). Our attack shows that
feedback mechanisms of modern touchscreens excessively
expose sensitive information in a way that an attacker may
recover it automatically and very efficiently. Unfortunately, as
discussed in §VI and §V, no definitive protection solutions
offering the same degree of usability of key magnification
exist.

In summary, we make the following original contributions:
• To the best of our knowledge, this is the first study of

practical risks brought forth by mainstream touchscreen
keyboards, with particular attention to privacy leaks.

• We designed a precise, fast, and practical attack that
detects keystrokes while a user is typing on a touchscreen.
The technique is robust to rotations and perspective
distortions, thus the attacker is not required to stand
behind the victim nor to observe the face of the screen
perpendicularly.

• We made our attack robust to occlusions (e.g., fingers,
onscreen reflexes), by developing an efficient filtering
technique that validates detected keys and reconstructs
keystroke sequences accurately.

II. THREAT MODEL & REQUIREMENTS
In our threat model the attacker just points a video camera
to the target touchscreen while the victim enters a text. No
remote nor local access to the device is required. Our attack
automatically reconstructs the text based solely on the keystroke
feedback displayed on the screen: No visibility of typed text is
required. For example, the victim may type text on a password
input field, where the letters are hidden by asterisks or dots.
In our envisioned scenario, exemplified in Fig. 1a, an attacker
would stand behind the victim (e.g., waiting at a bus station)
and point a smartphone camera towards the target device. The
attack works nearly in real-time and requires only an adequate
buffer of frames.

The generality of our approach depends exclusively on the
following simple and realistic requirements:

Requirement 1 The target virtual keyboard must display
a feedback whenever a key is pressed. From now on, we
refer to such a feedback as the magnified key. Magnified

Phase 1 Screen Detection and Rectification

Input Current frame.
Task Detect the touchscreen image by feature extraction and match-

ing against the template of the target screen. When a match is
found, rectify and crop the screen area. Any successful match
improves matches in the next frame(s).

Output A rectified, cropped and scaled image of the device screen
in the current frame. This is close to the image that a fixed
camera had acquired when the device is at a fixed distance,
with its screen parallel to the camera’s sensor.

Phase 2 Magnified Keys Detection

Input Rectified image of the target screen.
Task Isolate magnified-key candidates, i.e., high-contrast areas of

the rectified image that are different from the template and
previous frames.

Output A segmented image (i.e., a map of the image areas) identifying
the magnified-key candidates (blobs). Typically, there is more
than one blob per frame.

Phase 3 Keystroke Sequence Recognition

Input A set of magnified-key candidates.
Task Filter out wrong candidates, by matching them with the

corresponding template of the magnified key, thus identifying
the best-matching key.

Output The symbol, if any, associated to the best-matching key.

Table I: Overview of our attack.

keys must be partially visible (at least in one frame after
each keystroke). Our attack works even when fingers
partially cover the magnified keys, as it typically happens.

Requirement 2 The attacker must know the model of the
target device and obtain the following static information:

• Screen template: A screenshot or a photograph of the
target device and application used by the victim.

• Key template: The appearance (i.e., sizes and font
family or symbol set) of each magnified key.

• Magnified layout: Set of coordinates of the magnified
key centers. In what follows it is represented by
ML= {c1, · · · ,cL}; note that these points can be easily
mapped onto a regular grid. For example, in the
US English keyboard (Fig. 1e), the magnified layout
contains the coordinates of L = 26 magnified keys.

iPhone, Android, and recent BlackBerry devices, the most
popular mobile touchscreen phones, all meet Requirement 1
Requirement 2 is easily met by taking a screenshot of the
target application(s) (e.g., Mail, Twitter) on (a copy of) the
target device.

III. ATTACK DESCRIPTION
Fig. 1 and Tab. I summarize the proposed attack. The input of
Phase 1 is a frame of the video sequence (b), while the output
is the corresponding rectified, rotated, and cropped image of
the device screen (c). In Phase 2 this image is compared
with the screen template and the previous (rectified) frames,
to detect differences. Typically, these differences (d) do not
allow to identify yet the magnified key, as there could be
other magnified-key candidates. Phase 3 determines the best
match among all these candidates, by direct comparison of the
selected areas against their corresponding templates. Thus, the
typed symbol is successfully recognized.

Notation
We consider frames as grayscale images. An image I is a matrix
of real values in [0,1], and I(x,y) indicates the intensity of
its pixel at coordinate (x,y). It and Zt are the acquired frame
and the corresponding rectified screen at time t, respectively.
For easier notation, we indicate the 2D pixel coordinates with
vector x = (x,y) and, where not specified, we assume that we
assume that x belongs to the domain of Zt .

A. Phase 1: Detection and Rectification
We first leverage screen detection to search for any occurrence
of the screen in the input video, and then exploit image
rectification to rectify the image of the detected screen by
estimating a suitable perspective transformation. Both methods
rely on feature extraction and matching. An image feature
is a small image patch centered on a peculiar point of the
image, usually where the image presents a discontinuity (e.g.,
a corner or an edge). Given two images and their features, these
are matched to find image correspondences (i.e., two features
representing the same object in the scene). We use SURF
features [2] because they are invariant to rotation, scaling and
skew transformations, and they have a lower computational
cost which makes them more suitable for real-time applications.
For the sake of clarity, we first explain the rectification task.

Image Rectification
When the spying camera aims at the device from a skewed
position the resulting image of the screen is perspectively
distorted. Our approach corrects this by constructing a (syn-
thetic) rectified image that preserves the screen’s geometry. In
general, the distorted image of a planar surface is related to its
rectified version by a 3×3 matrix H called homography [3].
The homography maps corresponding points of the two images,
that is

[
x,y,1

]T ∼ H
[
x′,y′,1

]T , where (x′,y′) and (x,y) are the
image coordinates of the points of the acquired images before
and after rectification, respectively. H is a full-rank matrix
(hence the relation is invertible) defined up to scale (i.e., it has
9 elements but only 8 of them are independent [4]) and can
be estimated from the distorted and rectified images using a
minimum of 4 corresponding points on the two images.

In our case there are many invariant parts on the screen, e.g.,
the keyboard and other graphical elements. Therefore, we use
the screen template as a reference rectified image, and look for
matches to estimate, at any time t, the matrix Ht . Therefore,
for each input frame It , we obtain the rectified image Zt by
applying the estimated Ht to each pixel belonging to the device
screen: Zt(x,y) = It(x′,y′), where (x,y) and (x′,y′) are related
by the homography. The rectified image Zt contains only the
device screen and has the same size of the screen template—
thanks to image interpolation. Finally, we scale Zt to guarantee
that the darkest area correspond to 0 and the lightest to 1, such
that Zt can be easily compared with the screen template.

Screen Detection
The degree of distortion and the position of the screen in the
frame can vary as the camera moves; therefore, we must search
the whole frame to isolate the screen image. In doing this,
we account that the screen can be (dynamically) occluded by
fingers or other objects a priori unknown.

(a) Envisioned attack settings. (b) Input of Phase 1. (c) Input of Phase 2. (d) Input of Phase 3. (e) Output (i.e., the ‘R’ key).

Figure 1: Intermediate outputs captured in a sample attack (a). Phase 1: The device screen is detected in each frame It (b), cropped and
rectified, yielding Zt (c). Phase 2: The magnified-key candidates are selected within the foreground, i.e., the image areas shown in (d).
Phase 3: According to the coordinates of the magnified layout ML (e), each candidate is compared to its template to identify the typed key.
The template of ‘R’ is selected as it shows the best match.

To ensure efficient and reliable screen detection we pursue
a feature-based template-matching approach. Features of the
screen template (e.g., screen corners) are matched with the
features extracted from It to find corresponding points and
detect the region of It where the screen appears. For more
accurate detections, we rule out false correspondences by
enforcing the following procedure: all the correspondences
are used to estimate the homography Ht in a RANSAC [5]
process, which allows to discriminate inliers and outliers, i.e.,
good and false corresponding points. If the number of inliers is
sufficiently larger than the number of outliers, we considered
the screen as detected and rectify the image of the screen
through the estimated homography. Otherwise, no screen is
detected and we discard the frame. This approach is faster than
a pixel-wise comparison of the two images and it can be easily
extended to any other device just by using the proper template
image.
B. Phase 2: Magnified Keys Detection
Magnified keys are nonstationary elements of the rectified
frame sequence and we can detect them by leveraging a
background subtraction technique [6]. For each screen image Zt ,
we estimate the background Bt , which describes the stationary
elements, and the foreground Ft , which discloses those parts
of Zt that have changed. The foreground is defined as follows:
Ft = 1 where |Zt(x)− Bt−1(x)|> kΣt−1(x) and zero otherwise.
Here k > 0 is a tuning parameter, Bt−1 and Σt−1 are the
estimates, at t−1, of the background image and its standard
deviation, respectively. These are defined as

Bt(x) =

{
Bt−1(x), ifFt(x) 6= 0
αFt−1(x)+(1−α)Bt−1(x), otherwise

, (1)

and

Σt(x) =

{
Σt−1(x), ifFt(x) 6=0√

α(Ft(x)−Bt(x))2+(1−α)Σ2
t−1(x), otherwise

, (2)

where α ∈ [0,1] is an update parameter.
We initialize B0(x) using the screen template, and Σ0(x)∼

σ ∀x, where σ is the standard deviation of the image noise,
computed as in [7]. This initialization method allows us to
detect keystrokes since the very first frame of the video, without
need of any training sequence or attacker’s manual intervention.
Although these are quite naïve estimates, the updating process
(1) and (2) guarantees satisfactory recognition.

1) Magnified Keys Identification
The foreground highlights occlusions (most probably typing fin-
gers, illumination variations, rectification errors) and magnified
keys. We disambiguate magnified keys from other occlusions
by exploiting the following priors:

• Key magnification lasts for few frames, often less than
other occlusions. Thus, we define a short-term foreground
St , which highlight image parts that have recently changed:
St(x) = 1 where |Ft(x)− [Ft(x)]n|> 0, and zero otherwise,
with [Ft(x)]n =

1
n ∑

n
i=1 Ft−i(x), where n ∈ N is the mini-

mum number of frames a magnification lasts.
• Magnified keys—black characters over a white key area—

are characterized by higher contrast than other occlusions
and the background. These provide a high response when
Zt is processed by high-pass filters. Therefore, we compute
the gradient Gt and the Laplacian Lt magnitudes by means
of convolutional filters:

Gt(x) = [(Zt ~gx)(x)]2 +[(Zt ~gy)(x)]2 , and (3)

Lt(x) =
[(
Zt ~g2

x
)
(x)
]2
+
[(
Zt ~g2

y
)
(x)
]2
, (4)

where gx,gy and g2
x ,g

2
y denote the first- and second-

order derivative Sobel filters [8], respectively, whereas
~ indicates discrete 2-D convolution.

The heuristic pixel-wise measure indicating of how likely the
foreground contains a magnified key is defined as

Mt(x) =

{
1
3

(
Gt (x)

max Gt (x) + St(x)+ Lt (x)
max Lt (x)

)
, ifFt(x) 6= 0

0, otherwise.
(5)

Note that Mt(x) is in [0,1], and that, Gt(x) and Lt(x) in (3)
and (4) are taken into account only in the foreground pixels
(i.e., where Ft(x) 6= 0).

We experienced that by thresholding Mt(x) we can reliably
isolate the magnified keys. The threshold Γ > 0 is determined
as in [9] and provides Kt(x), which is defined as Kt(x) =
1 where Mt(x) > Γ and zero otherwise. This binary image
Kt is then segmented, using morphological image processing
techniques [8], to identify its connected components (blobs).
Each blob is a set of pixels coordinates and we select the
keystrokes among these blobs. Fig. 1d shows the image values
in these blob’s areas.

(a) Full T f (c4) (b) Cropped T r(c4) (c) ROI(c4)

Figure 2: Examples of full key template, (a), used for computing dbw,
and the cropped key template, (b), used for computing ncc, defined
in (7), both performed with respect to the ROI, (c), for a given key
that, in this example, corresponds to ‘R’.

C. Phase 3: Keystroke Sequence Recognition
Each blob b ∈ Bt yields one or more magnified-key candidates,
belonging to the magnified layout ML: Phase 3 selects c?t , the
best-matching key at time t among these candidates as the one
that maximizes the key similarity.

The set of magnified-key candidates Ct is determined as
follows. For each blob bi ∈Bt , we compute its barycenter ḃi and
its closest key ci = argminc∈ML d(c, ḃi), where d(c, ḃ) = ‖c− ḃ‖
is the Euclidean distance. Then, for each ci, we define its
neighborhood N (ci) as the set of the coordinates of ci and its
adjacent keys (see Fig. 4). Specifically, in our implementation
N (ci) = {cl

i ,ci,cr
i} is used, where labels ‘l’ and ‘r’ indicate

the magnified keys at the left and the right of ci, respectively.
The set of candidate keys is Ct =

⋃|Bt |
i=1 N (ci).

1) Key Similarity
For each key c ∈ ML, the attacker devises the full key
template, T f (c), the cropped key template, T r(c) (as stated in
Requirement 2). Then, from the rectified frame Zt we crop the
Region Of Interest of c, ROI(c), which contains the magnified
key whenever c is pressed. More formally, ROI(c)⊂ Zt ,∀t, is
an image area centered in c, having the same size of its full
template T f (c). When c has not been pressed, ROI(c) contains
the keyboard background or occluding objects. Templates and
ROI are illustrated in Fig. 2. The key similarity Φt(c) involves
a pixel-wise comparison of the ROI against the key templates,
and as such it could be computationally demanding. For this
reason, we evaluate it only when ROI(c) is likely to contain a
specific magnified key by discarding most of candidate keys:
We compare, for each c ∈ Ct , the percentage of black and
white pixels in ROI(c) and in the corresponding full template,
T f (c). When these percentages are similar, we put c in a set
of selected candidates, C ?

t ⊆ Ct , otherwise we discard c. More
precisely, the black-white distance between ROI(c) and the
corresponding template is

dbw(c) = d
(
bw(ROI(c))−bw(T f (c))

)
/
√

2, (6)

where bw(A)= (Ab,Aw) is a function providing the percentages
of black (Ab) and white (Aw) pixels for any image region
A, and the factor

√
2 guarantees that dbw ∈ [0,1],∀c. This

distance is fast to compute and we leverage it to build
C ?

t = {c ∈ Ct | dbw(c)≤ Γbw}, which contains only those keys
whose full template matches the corresponding ROI. The
threshold Γbw is determined as described in §III-D; we consider
“black” pixels with intensity lower than 0.3, and white those
pixels with intensity above 0.5. We determine these parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 970 980 990 1000 1010 1020 1030 1040 1050

Ψ
(t

)

t

Γ
Ψ

Ψ(t)

f

t

u
u

u

n
a q

d

e r

r

r r

t v x

n

p p p

e

l g

v

i
i i

k a

e h p s

a

s s

s

c s

s

e e

e

p q

f

c e

c

t i
c

n

a

Filtered Ψ(t) Ψ(t) ≤ Γ
Ψ

u

r
p

i s

e

Figure 3: Low-passed key similarity measure Ψ(t) of the best matching
key c?t , threshold ΓΨ, and local maxima. Frames providing values
of Ψ(t) below ΓΨ are discarded. The brackets above each local
maximum indicate the minimum distance between two local maxima,
which can be considered as the minimum number of frames the key
magnification lasts. The selected keys are also displayed. Note that
selected magnified keys last longer than one frame, and that the zero
values in Ψ(t) correspond to frames where phase 2 does not detect
any blob.

experimentally, by exploiting the fact that areas not belonging
to magnified keys typically have values in [0.3,0.5].

The key similarity of the magnified-key candidate c ∈ C ?
t is

proportional to the maximum value of the normalized cross-
correlation, ncc(), between the cropped key template T r(c)
and the ROI(c):

Φt(c) :=
max(ncc(T r(c),ROI(c)))

1+dc
, (7)

where dc is the distance between the candidate c and ḃi, the
barycenter of the corresponding blob bi that yields c ∈N (ci).
Maximizing ncc(T r(c),ROI(c)) means considering different
displacements of T r(c) to determine the best match with
ROI(c). Fortunately, a very fast algorithm for computing ncc()
exists [10].
2) Best Matching Key
We identify the best-matching key at time t as c?t :=
argmaxc∈C ?

t
Φt(c), and the corresponding key-similarity mea-

sure is Ψ(t) := Φt(c?t) . Summarizing, c?t identifies the mag-
nified key selected as the most likely to appear in frame Zt ,
whereas Ψ(t) represents the measure of the similarity between
the template, T r(c?t), and the corresponding ROI(c?t).
3) Keystroke Sequence Analysis
Key magnifications typically last longer than one frame, and
there are frames that contains no magnified keys, thus it is
insufficient to identify the best-matching key at each time step.
We address these problems by analyzing Ψ(t) when t varies
(an example of Ψ is plotted in Figure 3). We exploit the fact
that key magnification has fading transitions, thus the measure
Ψ(t) reaches its maximum and then decreases every time a
key magnifies. Therefore, the first case is successfully handled
by extracting the best-matching keys corresponding to local
maxima of Ψ(t).

As frames without magnified keys typically exhibit low
values of Ψ(t), we can easily discard them by thresholding.
We determine such threshold ΓΨ experimentally as the value

Figure 4: At frame Zt , for each blob b1,b2 the candidate keys c1,c2
are found as the keys that are closer to each blob’s centroid ḃ1, ḃ2.
The corresponding neighborhood are {cl

1,c1,cr
1}, and {cl

2,c2,cr
2},

respectively.

of Ψ(t) where there is no key magnification, as described in
§III-D. Furthermore, to reduce fluctuations of the key similarity
measure, we preliminarily low pass Ψ(t) (e.g., by an averaging
filter). We set a minimum distance of 5 frames between adjacent
local maxima (corresponding to a very high typing speed at
25fps). Fig. 3 illustrates the local maxima extraction procedure,
and the corresponding keystrokes recognized. We stress that, by
extracting the local maxima of the key similarity, we naturally
recognize typed doubles.
D. Parameters Estimation
We determine both thresholds Γbw and ΓΨ through the follow-
ing statistical approach. We acquire few videos of different
users mimicking text typing without actually pressing any key,
and process each video with our system to record the values
of dbw(·) and Ψ(·) into two sequences. We consider these
sequences as realizations of two random variables (i.e., the
values of dbw and Ψ(·) when there are no keys magnified on the
screen). Hence, with Chebyshev’s inequality, we determine two
confidence intervals for their expectations as Γbw = µ̂d +νσ̂d
and ΓΨ = µ̂Ψ +ησ̂Ψ, where ν,η ∈ R are tuning parameters,
whereas µ̂ and σ̂ are the sample mean and standard deviation
computed over the respective sequences. Our experiments on
the iPhone revealed that ν = 0 and η = 3 yield satisfactory
results.

IV. EXPERIMENTAL EVALUATION
We show that our attack is faster than a human inspecting
the same video while yielding comparable accuracy, and we
evaluate the robustness of our attack in extreme working
conditions. We recorded videos merely for repeatability of
experiments, whereas our attack works perfectly in streaming.
We published a sample video of an experimental session1.

We used three types of text inputs:
• Context-free text: Available at http://sqze.it/qMNwy; it

has poor context (63 English words, 444 symbols plus
spaces). Since we are comparing our attack against human
attackers, context-free text ensures that people involved
in our experiments cannot to simply guess words using
the linguistic context.

• Context-sensitive text: Available at http://sqze.it/SGTu-;
the first 65 words of the lyrics of Dream Theater’s

“Regression” song, which is rich of context (total 278
symbols plus spaces).

1http://www.youtube.com/playlist?list=PL81F91E404B928833

Hits Errors Speed

Context-free text (444 letters)

Our attack 91.03 3.16 0.674
Attacker 1 96.09 0.75 0.327
Attacker 2 87.78 1.90 0.550
Attacker 3 94.61 1.39 0.306

Context-sensitive text (278 letters)

Our attack 89.11 7.64 0.803
Attacker 1 97.11 1.07 0.290
Attacker 2 93.20 1.90 0.586
Attacker 3 97.77 1.18 0.280

Table II: Average hit and error rates, and speed (keystrokes per second)
of our attack (faster) versus manual recognition (slower).

• Brief text: Used to evaluate specific features and limita-
tions:. “Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas” (80 letters plus
spaces and symbols, total 13 words).

A. Precision and Speed
We performed 3 sessions on context-free text and 3 on context-
sensitive text, each with different victims typing naturally.
Without any a priori knowledge, each attacker had to recognize
the keystrokes by stopping, rewinding or slowing-down the
recorded stream as needed. As summarized in Tab. II, and
thoroughly discussed in our experiments detailed in [11],
manual inspection is notably slower than our attack. Our
system can recognize up to 0.803 keystrokes per second,
about one third of the maximum typing speed, and 0.864
in the best case, about half of the average typing speed. Only
twice (over 18 trials) the attackers were able to beat such
speeds. As expected, human sight can recognize symbols
with slightly higher precision than our system, especially with
context-sensitive text. However, our system is just 3 percentage
points less accurate than the attacker with the highest average
precision; plus, our attack is remarkably faster. The state-of-
the-art system [1], even under more relaxed hypotheses, works
at 0.101 keystrokes per second on average, with a maximum
precision of 82%, only achievable in context-sensitive text. Our
attack needs no linguistic context to recognize 97.77% of the
keystrokes at 0.803 keystrokes per second.

In case of faster typing, manual analysis is more error prone,
whereas our system is not influenced by typing speed (as far as
there are at least 5 frames between two consecutive keystrokes,
as reported in §III-C3)
B. Resilience to Disturbances
We measured the robustness of Phase 1 through a series of brief
typing sessions with significant disturbances: (1) we attached
a piece of gray tape diagonally on the screen to emulate a
permanent occlusion, (2) we asked the victim to shake the
device while typing, (3) we shook the camera during recording,
and (4) both the camera and the target device were shaking
during recording.

Tab. III shows that Phase 1 can rectify parts of the video and
recognize the screen. Under conditions (1) to (3), Phase 2–3
recognized up to 96% (44.44% with permanent occlusions)
of the symbols with 4% errors (33.33% with permanent
occlusions). However, users seldom hold touchscreen devices
with permanent occlusions, especially while typing on the go.

(a) Occlusion (b) Camera + device movements. (c) Device movements only.

Figure 5: Permanent occlusions (a) and quick camera movements (c
are tolerated with errors. However, when both camera and device
shake excessively b) the high blur level prevents the detection of the
screen.

As shown in Fig. 5, our system can handle sudden movements
of either the camera or device, whereas Phase 1 fails when
both the camera and device move excessively, resulting in intra-
frame, motion-blurring effects that prevent successful feature
extraction.

V. RELATED WORK
Balzarotti et al. proposed in [1] an attack related to ours, as
discussed in §I, although unsuitable to mobile scenarios and
significantly inefficient as mentioned in § IV-A.

Vendors proposed to reduce the viewing angle of touch-
screens to limit an attacker’s chances of seeing what a victim
is typing [12], as in so called “privacy screen filters”. Besides
the fact that these mechanisms are not widespread on the
mainstream market, they could make it harder to launch our
attack, but simply because it would be more challenging for
the attacker to find a suitable angle to observe the target device
from, not specifically because of a limitation of our approach.

In [13], the authors propose to map sensitive, short infor-
mation onto a different, temporary, mnemonic alphabet (e.g.,
colors or simple shapes). This mapping is dynamically chosen
by users before typing. This approach mitigates casual shoulder
surfers, but the authors explicitly mention that no protection
is guaranteed against attackers armed with video cameras.
Therefore, our attack cannot be effectively mitigated by this
type of techniques. A more extensive review of these methods
is on [11] and hereby omitted for space limitations.

A different approach was proposed in [14] for public
touchscreens, consisting in tracking the user’s pupil movements
and map them onto a grid layout to implement a gaze-based
keyboard. Unfortunately, these countermeasures are not suitable
for mobile devices conditions, because the accuracy of the
eye-tracking decreases if the use moves or the device shakes.
In addition, as the defensive measures discussed above, this
mitigation is limited to protecting passwords and short texts.

VI. CONCLUSIONS
We proposed an automatic attack that recognizes keystrokes
from key-magnification, which is enabled by default in iPhone,
newer BlackBerry, and Android devices. In realistic scenarios

DISTURBANCE PHASE 1 PHASE 2–3

Hits % Errors %

(1) Permanent occlusion difficult 44.44 33.33
(2) Jiggled device feasible 67.74 8.70
(3) Jiggled camera feasible 96.00 4.00
(4) Jiggled device + camera unfeasible 0.00 -

Table III: Detection results under different working conditions.

our attack is as accurate as manual inspection, yet significantly
faster. Disabling key magnification, disallowed by Apple
mobile devices, can mitigate our attack. Therefore, keyboards
that employ key-magnification feedback are unsuitable for
high-privacy applications and, given that the most popular
touchscreen devices display such feedback.

Mechanical keyboards provide about the same degree of
usability of magnifying touchscreen keyboards, although the
former are less privacy leaking. In fact, we recorded a typing
sessions on a mobile mechanical keyboard2, using a long
English text with no linguistic context. Six volunteers who
analyzed the video reported that most of the keystrokes were
not actually visible. Only one volunteer was able to recognize
up to 1.35% of the text. Other volunteers gave up for excessive
fatigue.

Future work will concentrate on detecting nonmagnifying
keys (e.g., spacebar), not recognized on our current imple-
mentation. Analogous observations apply to alternative layouts
(e.g., landscape). The latter will require minor modifications.
Instead of using only one screen template (e.g., portrait-
alphabetical), Phase 1 will need to cycle through several
alternative layouts (e.g., portrait alphabetical, portrait numerical,
landscape numerical) and choose the best-matching one before.
Similarly, Phase 2 would need additional key templates.

VII. ACKNOWLEDGMENTS
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreements nr. 257007 (SysSec)
and 216026 (WOMBAT). The opinions expressed in this paper
are those of the authors and do not necessarily reflect the
views of the European Commission. We gratefully acknowledge
VirusTotal for the access to their malware database.

REFERENCES
[1] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on

Keyboard Input from Video,” in SSP ’08, Oakland, CA, May 2008.
[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–
359, 2008.

[3] J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry.
Oxford Classic Texts, 1998.

[4] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[5] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communication of ACM, vol. 24, no. 6, pp. 381–395, 1981.

[6] M. Piccardi, “Background subtraction techniques: a review,” in Systems,
Man and Cybernetics, 2004 IEEE International Conference on, vol. 4,
October 2004, pp. 3099 – 3104 vol.4.

[7] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Ed.).
Prentice-Hall, Inc., 2006.

[9] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp.
62 –66, jan. 1979.

[10] J. Lewis, “Fast normalized cross-correlation,” in Vision Interface, vol. 10,
1995, pp. 120–123.

[11] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “Don’t
touch a word! a practical input eavesdropping attack against mobile
touchscreen devices,” Politecnico di Milano, Tech. Rep. TR-2010-59,
2010.

2http://www.youtube.com/watch?v=JxrqYA56A48

[12] Y.-M. Tsuei, “Method and apparatus for preventing on-screen
keys from being accidentally touched using the same,” US Patent
12427767, HTC Corporation, April 2009. [Online]. Available:
http://www.google.com/patents?id=VU_TAAAAEBAJ

[13] D. S. Tan, P. Keyani, and M. Czerwinski, “Spy-resistant keyboard: more
secure password entry on public touch screen displays,” in OZCHI ’05.
Narrabundah, Australia: CHISIG of Australia, 2005, pp. 1–10.

[14] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd, “Reducing shoulder-
surfing by using gaze-based password entry,” in SOUPS ’07. New York,
NY, USA: ACM, 2007, pp. 13–19.

