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Abstract. Recovering from attacks is hard and gets harder as the time between
the initial infection and its detection increases. Which files did the attackers mod
ify? Did any of user data depend on malicious inputs? Can | still trust my own
documents or binaries? When malcode has been active for some tinits and
tions are mixed with those of benign applications, these questions are itsiposs
to answer on current systems. In this paper, we des®ibkDuster, an attack
analysis and recovery system capable of recovering from compliestiseks in

a semi-automated mann@iskDuster traces malcode at byte-level granularity
both in memory and on disk in a modified version of QEMU. Using taint analy-
sis,DiskDuster also tracks all bytes written by the malcode, to provide a detailed
view on what (bytes in) files derive from malicious data. Next, it uses tffigg-in
mation to remove malicious actions at recovery time.
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1 Introduction

We describebiskDuster, a semi-automated system to help recover from intrusions. |
trusions may result from remote attacks, open network sharploits (Conficker [22]),
user-installed Trojans (some versions of Torpig [27]), Efmwever it spreads, the mali-
cious code may interfere in deep and involved ways with tiséesy state and removing
the infection and its effects is difficult. For instance, Jigrturns off anti-virus scanners,
modifies data, steals confidential information, and dowsddastalls more malware on
the victim’s computer. Other attacks destroy data, or gutdiles for ransom.

Our recovery procedure aims to return the system to a saieg asexisted just be-
fore the attack, while retaining as much of the recent useraspossible. We show that
we can undo most of the effects of complicated attacks. Axample, we demonstrate
the usefulness of our approach for drive-by-downloadsfttah and execute malware
that subsequently modifies the registry, and infects ottmgrams that, in turn, modify
system state. And so on. See Figure 2 for a full descriptiauofunning example. We
evaluate our solution with several real attacks on Windows.

Recovering from attackBespite a plethora of defense mechanisms, attackers atii m
age to compromise computer systems. Sometimes they do sortypting memory
and injecting a small amount of shellcode to download anthihthe real malware.
Sometimes the users themselves install trojanized saftWwarmake matters worse, the
malware may be active for days before it is discovered.



Upon discovery of a compromised machine, one of the mosterigihg questions
is: what did the malware do? Which files has it modified? Did tii@ciers change or
corrupt my financial records? Can | still trust any of the fitesated after the compro-
mise, or should | check each and every one manually? Did theliattack spread to
other programs? And, most importantly, caaridothe malicious actions and restore
the system to a sane state, without losing my recent data?

Currently, the only sane state a system can revert to is shét@wn good backup.
This leaves the question of what to do with the changes to ke that occurred
since then. Ignoring them completely is safe, but often cept@ble—losing valuable
data generally is. Accepting them blindly is easy, but né¢-samodifications may be
the result of the malware’s actions. However, the alteveati sifting through each of
the files (or even blocks) on disk one by one to see whethenistkbe trusted may be
too time-consuming. Thus, we develofdeidkDuster to automate most of this process.

High-level overviewFigure 1 illustrate®iskDuster's main flow of operations. The cir-
cled numbers in the text below correspond to the numbersifighre. To minimize the
performance impact, and to retain as much of informatioruatie attack as possible,
we decouple the analysis and recovery from the productiachina. ThuspiskDuster
records the execution on the live production maclihand replays i2) on a dedicated
security server with additional security checks and regpeperations3).
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Fig. 1. Intrusion recovery in a decoupled security model.

To recover the user data after an infection, we assume tisemee of at least one
detection metho@). The nature of the detection method is not important. Theopype
in this paper works with dynamic taint analysis (DTA) and Avaaning, but we can
easily add system call analysis or other techniques.

As soon adDiskDuster detects an intrusion in the replay, the user shuts down the
original machine, while the security server continues fiag the trace, using DTA to
monitor all the malcode’s actiorn®), tainting all writes by the malcode to memory and
disk as malicious. Taint propagates whenever the malidiytss are read, copied, or
used in ALU operations. If malicious bytes compromise oti@cessesDiskDuster
traces those also. FinallpiskDuster cleans up the system by replaying benign disk
writes up to the moment of infection. For the time betweenitiiection moment and
the detection momenDiskDuster classifies all disk writes as ‘benign’ (not affected
by the attack), ‘malicious’ (written by a malicious proceasd ‘suspicious’ (possibly
affected by the attack). Only suspicious data requires rlantervention.

Contributions Most existing intrusion recovery approaches assume tleainflection
cannot spread to the kernéself [15, 3, 14]—a very strong assumption that typically



does not hold in practice. Others provide very limited petit (e.g., modification, but
not removal, of system state and a few system files only [20Fequire users to define
trusted data and malware manually [3]. Finally, existingrapches are typically tied
to specific operating systems (often Linux, to have accessuoce code) [11, 28, 14].

In contrast,DiskDuster operates at the level of the (virtual) hardware and the ap-
proach can be applied to any OS. Throughout this paper, wesfon Windows, as it
is (still) easily the most popular attack target. In additiDiskDuster protects both the
kernel and user processes and handles modification and atofany file.

Thus, the contribution of this paper is an intrusion analgsid recovery system on
top of a hardware emulator that works withmodifiedOSs and applications and pro-
tects both kernel and user processes against complicasett&tOur goal is to recover
userdata, but the system helps to recover other files and folders also.

Moreover, where modern tainting systems typically detedtack an attack on a
single processDiskDuster tracks the attack and all related processes, as well as their
spread throughout the system. For instance, we track &lwiiges of the malicious
code, and take appropriate action when a benign process seat bytes. Likewise,
we treat processes that are started by a malicious procesal&sous also. The same
is true for threads injected by malicious code in a benigigm. We are not aware of
other systems with the same comprehensive tracking of imati@activity.

Tracking infections requires tracking the actions and detaerated by the attack.
Specifically, we need to know where this data ends up and vetiaha and data depend
on it. Where almost all state-of-the-art intrusion recoveojutions [14, 20] construct
dependency graphs explicitliskDuster tracks dependencies directly, by means of
dynamic information flow tracking (taint analysis) and ateéslevel granularity. Doing
so is simpler and potentially weaker. But as it requires Vititg knowledge of the OS, it
enables us to (a) support different OSs, and (b) handle kiafieetions also. Moreover,
we will see that the wapiskDuster handles implicit flows is very simple and yet very
powerful. It allows it to limit taint tracking to explicit flws during analysis, while not
losing even a byte of implicitly modified data (although de@rting may well occur).

Clearly, recovery cannot be complete if the attack had digets beyond this sys-
tem. For instance, if the malware sent spam, or leaked irdtom to an external party,
there is no way to undo this. We do revert changes on the filemsgs We think this
is sufficient for cleaning up infections locally. Even if sefmemory-resident) attacks
do not themselves leave any presence on disk, this is notdepndor DiskDuster. As
long as it can detect the attack (e.g., using taint analyisis)ll remove all disk writes
that the malware influenced, while the malware itself wilappear after the reboot.

2 Threat model and assumptions

The ideal intrusion recovery system, upon detecting amclgttamoves all harmful ac-

tions related to the attack automatically, leaving onlyndes to the system unaffected
by the attack. Fundamentally, this is not possible—at leastmthe general case. For
instance, after an attack deletes the AV binary, a legimaer may write a memo: “No

AV scanner present”. Automated recovery may restore theca&ser, but cannot spot
the relation with the memo, resulting in inconsistencie® @lso Section 5).



A nasty attack

The effects of real-world attacks like Torpig and Conficker have beemptex and devastat
ing. In this paper, we combine in our running example the effects of thiedex number of
others to create a complicated attack:

1. Adrive-by-download infects the browser.

2. The attack immediately migrates to another running process on the santens—
infecting this process also. The migration complicates the tracking, sinsetoad pro-
cess did not connect to a malicious website.

3. The attack deletes the antivirus program.

4. Next, the shellcode in the second process downloads and executealth@lware and
adds a registry key to make itself persistent across reboots.

5. Later, the malware encrypts the ‘Documents’ folder on disk, fosoan purposes, while
deleting itself to prevent security experts from reverse engineering it.

Goal: to clean up the system and remove all traces of the attack.

Fig. 2. Attack scenario used as a running example.

In practice, however, (semi-)automated recovery can beneifol tool in post-hoc
sanitization. By tracing what data was directly or indinggenerated by the attack, we
reduce the load on the administrator significantly. We doataim thatDiskDuster is
perfect. While it represents a significant improvement oerstate of the art, and often
restores systems automatically, we require human intéoreim some cases. Still, even
hereDiskDuster indicates in detail which (parts of) files need further siciut

Assumptiondn this paper, we assume the following:

1. Intrusions occur at arbitrary points in time and may nodéetected until later.

2. Attacks can infect both user processes and the kernel.

3. Attacks may hide themselves root-kit style and turn off #sanners and other
defensive mechanisms on the guest OS.

4. DiskDuster can detect the attack and trace it back to the moment of infedsiven
a recorded execution trace, we believe this is a reasonablergtion. A rootkit
may hide itself, but it cannot remove itself from the exeeutirace, which means
that AV scanners, taint trackers and other detection mathade a chance to detect
it eventually. Once an AV scanner detects a trojan on thesysie skip backwards
through the trace until we find a snapshot without the trojaaty, and then replay
the execution until it is created and executed for the finseti

5. Attacks cannot tamper with the recording process untiteAs the recorder runs
at the level of virtual hardware, this is a reasonable assomp

Decoupled securityWhile it is possibleto runDiskDuster on a stand-alone system, we
designed it for decoupled security [4]. Decoupled secustyords the execution on a
live production machine and replays it on a dedicated sgcserver with additional
security checks and recovery operations (see Fig.1). keretbrds, all security checks
and recovery operations run on the server.

Decoupled security hides the overhead of security checks fthe production sys-
tem. At a small, constant cost of recording on the producsipstem, we can apply



any security check on the replay side, including those too esiperto run on produc-
tion systems. Since we use full-system DTA, the overheadipbaalysis is very high
(about 20x), we prefer to run it devolved from the productiachine. Also, it is not
possible for malware to hide ‘rootkit-style’ after the infn. As the initial point of
infection is preserved in the execution trace, it can be ddoy periodic rescanning of
older traces with new signatures. Finally, recording pilesi automatic backup, fine-
grained versioning, and audit trails. Not surprisinglycalgpled security has become a
popular security model [8, 4, 24, 33]. Moreover, vendors M Ware now offer record
and replay functionality in their products [31].

Of course, recording and storing execution traces is n&t, foet in practice, the
costs are low (a few percent increase of CPU overhead andnaiithg sizes [4, 24]).
A more serious drawback of decoupled security is that attack always detecteal
posteriori The same is true for traditional AV scanners. If a new tragjames out, it
takes a while before AV databases contain a signature foreither case, the challenge
is to clean up the system and remove all traces of the attack.

Implicit flows One of the most difficult problems for dynamic taint analyisishat of
implicit flows [2, 26], and we do not pretend to solve it in tipigper. An implicit flow
occurs when an assignment depends on a tainted value in &iconéor instance,
consider the following code:

int y=0; if (x==1) y=1,

If x is tainted, perhapg should be tainted also? After all, its value is completely
determined by. The problem is that implicit flows often lead to overtaigtif2, 26].
Recent work by Kang et al. [13] presents an interesting aggréo curtail overtainting
for certain applications, but for now implicit flows cannat handled reliably. We do
not try to solve them at all, but we cannot afford to ignorenttegther, as skipping them
leads to false negativeBiskDuster simply takes a conservative approach for malicious
data on disk; whenever a process has read malicious or suspliytes, all subsequent
writes are marked ‘suspicious’. As a result, taint launagis impossible. We discuss
more interesting/problematic scenarios related to intgdlmwvs in Section 5.

3 Architecture

After detecting an attackDiskDuster traces it back to find the point of infection. It
then uses DTA to track the malicious code’s actions and uhdanalicious effects.
DiskDuster tries to remove these effects by restoring the disk to amfiexfion state,
while presenting a user with lists of files and folders thatme malicious or suspicious
in the period between the attack and the detection. Whilegeeaan safely assume that
files classified as benign are intact, they need to scrutthisuspicious ones. Refer to
Fig. 3 for a timeline illustrating the course of actions jpenfied byDiskDuster.

In addition,DiskDuster supports investigators by analyzing the attack. For ircsan
for drive-by-downloadsDiskDuster separates the shellcode from its packers, and when
the shellcode downloads malware, it traces what bytes dctiisnge.
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Fig. 3. DiskDuster timeline. Upon detecting an attacRjskDuster restores the disk to a pre-
infection state®), removes all malicious data, and presents a list of all suspicious files/égil

3.1 Decoupling DiskDuster: recording and replaying execubn traces

Recording and replaying executions is hardly novel. In abr ive have implemented
and written about several such systems ourselves, bothlaygiem [10] and pro-
cess [24] granularity. Others built similar solutions [83Q, 19, 33]. Moreover, VMware
Workstation 6.5 introduced replaying as standard feature.

By recording only a minimum of non-deterministic eventg tverhead of record-
ing is small both in speed (a few percent) and storage (a fewdrea Bps) [4]. More-
over, even with expensive detection methods like DTA, lHgebetween the original
execution and the replica is minimal. In fact, the replaygridally has no problem
keeping up with the recorder, mainly because it does not teedit (e.g., for reads
from the network or file system, or in idle loops). This is knoas ‘idle boost'.

While the best fit foDiskDuster is clearly our tailor-made Qemu-based full system
replayer [10], we believe that with some effort other reeosd including VMWare'’s
could be used also. Indeed, VMWare showed that one can recoMMWare and
replay on Qemu in Aftersight [4]. In this paper, however, weus on recovery.

3.2 Tracking, logging, and snapshotting

Figure 4 illustrates thBiskDuster components. We briefly enumerate each of the mod-
ules here, and describe them in more detail in subsequetnrs&cAll these modules
operate at the level of the emulated hardware and work withagified OSs.

Tainting At the core of our architecture is a dy- Tor
namictaint tracking module, capable of tracking benign | | malicious
data in memory and on disk. The module is based process JLProces
on Argos [23] and the propagation rules are sim- 0s é‘
ilar to those of TaintCheck [18] and Minos [6];

taint

(a) taint propagates to the destination (register tracking

0
memory) whenever tainted data is copied, or usg
as a source operand in an arithmetic operatian,
(b) we clean the destination whenever an opeta- P
tion has a constant output (i.e., the output does not
depend on the instruction’s inputs), and (c) like Fig. 4. DiskDuster architecture
most systems, we do not propagate taint on deref-

erences of tainted pointers.

disk
monitor

process
monitor




Taint tracking inDiskDuster serves two different purposes. First, we use it just like
most other DTA solutions—to detect control flow diversion aode injection attacks.
For instanceDiskDuster taints all data coming from the network and raises an alarm
whenever such bytes modify the control flow of the progranedatly (e.g., by over-
writing the return address). Since we do not track indirent$|, DiskDuster may miss
attacks that corrupt memory by means of bytes propagatedgdhrindirect transfers,
be it tainted dereferences in translation tables, or intdlmys in conditions. It simply
means thabiskDuster is not a pefect detector, but we do not see this as a serioitadim
tion. We can easily complemebtskDuster with other detectors, such as AV scanners,
but perhaps also more powerful taint trackers. After we ctedie attack, the implicit
flow is no longer a problem, because we conservatively traekything that could be
influenced by malicious data.

Second, and much more essential, is that DTA allows us to taromialicious pro-
grams. For instance, once we know that a process is maljchausark all bytes written
by the process as malicious also—until we reach the end ofxdsugon trace. Doing
so allows us to separate good data from bad data at recovesy Tihese two uses re-
quire different types of taint. Thus, besides the cleafated tag, we distinguisimree
types of taint inDiskDuster, corresponding to three sources of taint:

Untrusted (U) We assigrU tags to all data from untrusted sources (like the network).
Malicious (M) We assigrM tags to all bytes written by malicious processes.
Suspicious §) When a benign process realdsbytes, we propagate that tag through
the execution (see above). Thus, all writeswbbytes to disk are also taggdd.
However, even if the written data does not derive directyfiM data, it may have
been influenced by it via an implicit flow. Thus, after a benggocess reads! or
S bytes, we label all its writes not already tagdddvith the S tag.

Monitor modulesThe two monitor modules trace both process execution ardirahs
put/output. Specifically, thdisk monitor keeps track of all reads and writes to disk,
while the process monitortracks running processes. WhbiskDuster detects an at-
tack, it marks the compromised process as ‘malicious’ artfi@® the disk monitor.
From now on, all writes by this process receiveMitag. In the process monitor, ma-
licious processes are handled in a special manner. Fongestavhen they start a new
process, the created process will be marked malicious also.

Logging, snapshotting and recovemhelogger stores all information generated by the
two monitor modules. The logs always include each write &adion disk, and in the
case of a compromised process, they also contain detaf@tiation about the context

of the process. Thenapshotmodule takes snapshots of the disk drive according to user-
specified policies. Snapshotting allows us to skip backwart forwards through an
execution trace quickly. Thecovery module, finally, sanitizes the system by replaying
write operations from the last snapshot until the momentfefation.

3.3 Attack detection

In our current prototypeDiskDuster detects attacks in one of two ways. First, it detects
memory corruption and code injection attacks by means o&dya taint analysis. The



process is similar to other full system taint trackers likg@s [23] and Minos [6]. All
data arriving from the network is marked ‘untrusted)(Whenever such data modifies
a process’ control flow (e.g., when it ends up in the progranmnter), the process
monitor treats it as an attack.

Second, when an external AV scanner detects new malwarexplieily contact
the process monitor to mark the corresponding process asious. The AV scanner
is useful for attacks that do not compromise an existing ganog For instance, a trojan
installed by the user. Other detection methods can be ptuggeasily. Regardless
of how we detect the attack, from that point onwards, the ggeanonitor tracks the
malicious process.

3.4 The process monitor: tracking attacks at thread granulaity

Upon detecting an attack, the process monitor closely mmithe offending pro-
cess(es) to track which files and processes it influences awdlh the process, the
process monitor classifies threads and processes as msgligospicious or benign.
First, we explain these categories, and then we focus oniaithallenges to support
them. By default, all processes and threadsbem@ignand the only exceptions are the
malicious and suspicuous threads listed below.

Malicious threadsDiskDuster marks all processes corresponding to attacks reported
by the AV scanner or DTA module awmalicious DiskDuster also treats a thread as
malicious if it is attacked by local processes—for instamdeen it uses a DLL provided
by a malicious process, or when its parent is malicious. Gntleread has become
malicious, all its writes are labeled with thétag. We say that a process is malicious if
it has a malicious thread.

Thus, the process monitor should both identify the malisithread, and inspect
its execution context, such as the loaded dynamic libraAdslitionally, it tracks the
creation of new processes by malicious threads and marksiiegdicious also.

Suspicious thread#\s discussed in Section 2, accurate tracking of implicitedeen-
cies is difficult, if not impossible. However, ignoring thezauses false negatives. We
take a conservative approach, and tragg&picioushreads—threadsossiblyinfluenced
by malware—and ask users to verify the contents of suspidi@ssduring recovery.

A benign thread becomes suspicious when we can no longeaugfearthat malware
does not influence its actions. First, whenever a benigrathhas read a suspicious or
malicious byte using I/O routines (e.g., from a file, the séwi or through interprocess
communication), we consider it suspicious. Second, wheroaeess has a malicious
thread, we cannot rule out implicit flows between the mailisi@and benign threads.
DiskDuster therefore considers all benign threads in this processigogp. Finally,

a child of a suspicious thread is also suspicious. We labbedstbnsibly clean data
written by suspicious threads with tBaag. We call any process with suspicious threads
suspicious also.

Thus, the process monitor again collects all informatiocessary to identify a sus-
picious thread, and tracks the creation of its childrenldd anonitors the data passed
through the I/O routines (e.qg., file reads and writes).



Low level tracking to classify processesSince the monitor resides at the (emulated)
hardware level, process tracking is not trivial—normal jsscsemantics as defined
by the operating system are not readily available. The prolif extracting high-level
semantic information from low-level data sources is knowth& semantic gap, and has
sparked much research activity in recent years [7, 21]. Wediscuss howbDiskDuster
bridges it.

Process and thread identificatiofo identify threads and processes at the level of a
processor emulator, we use the solution proposed in Antfa2h It tracks changes of
thecr 3 (or page directory base) register, which stores the phlyaddress of the page
directory. As arule, a context switch implies changing thiecs active page tables, and
thus loadinger 3 with the value stored in the descriptor of the process to leewed.
DiskDuster usescr 3 as a unique process identifier.

However, since all threads of a process share the page tambtgady, this mech-
anism does not distinguish between threads. To increasgrémailarity of tracking,
the process monitor additionally looks up kernel-levebdgttuctures that hold process
information. In 32-bit Windows, the Thread Environment &tq TEB), pointed to by
the FS register, stores information about the currently runnimgad. AsDiskDuster
can easily reach this data structure from the emulator ukiegegister, we extract all
relevant thread information directly from the TEB.

Tracking semanticdn 32-bit Windows, the process monitor tracks the necessary
mantic information by intercepting a number of functionsnfrtheker nel 32 library.
These include the process creation functions, and the @nes, such as the file and
registry read functions, or the interprocess communiodtiactions. To determine ad-
dresses of these functions, the process monitor implenaestdution typically used
by shellcode. Using the TERiskDuster identifies first the Process Execution Block
(PEB), and then the loaded modules. Each loaded moduleiosritee addresses and
symbol names of available functionBiskDuster uses this information during calls,
jumps, and returns, and checks (at the level of the emulatedinare) if the program
counter indicates the entry point of a function we intercégo, it calls a registered
hook.

3.5 The disk monitor

As illustrated in Fig. 3, the disk monitor tracks all readsl avrites to disk to support
two of DiskDuster's main tasks: (1) restore the disk drive to a pre-infectiotesi@) for
all post-infection disk activity, present the user with aalgsis of clean and suspicious
files (so that she can safely keep the clean ones, and veeifsuispicious ones).

The first task requires a replay of all disk writes that todcglin the period between
the last uncorrupted snapshot and the attack. The disk araiitply logs all operations
which modify data on disk, so that they can be repeated later.

Since the analysis phase requires precise informationtathean, suspicious, and
malicious parts of the dislKiskDuster extends its taint tracking module to handle disk
operations, and stores taint values of the disk contentsliskeshadow map. Whenever
a process stores data to disk, the disk monitor checks whieieuld label these bytes
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with a tag. If the process is listed as suspicious or malitle data is labelled with
S or M, respectively. Similarly, if the bytes carrylyy S, or M tag alreadypiskDuster
simply propagates it to the disk map. Conversely, when tlhgnam reads data from
disk, the disk monitor propagates tags from the disk maptimtamain memory map.
For instance, when a program reads tainted bytes from diskni@mory,DiskDuster
tags the corresponding bytes with a tainted tag in the memayy.

The diskmap can store the disk taint information at bloclelew at byte level,
depending on the user’s needs. The block level would pranidemation about which
files were touched by an attack, while the byte level would loeenspecific and show
which exact bytes in the files were changed by the malicioasgss. In the evaluation
we used a byte level map. The taint propagation between #hendap and the main
memory map is done at the level of the IDE emulator of the VM.

3.6 Snapshots

OnceDiskDuster detects an attack, it reverts the disk to a pre-infectiote dig replay-
ing disk writes that took place before the infection. Singglaying the execution from
boot time would incur a high overheddiskDuster uses disk snapshots. Upon detecting
an attack, it searches for the last snapshot before thetimfie@and replays only the
disk writes that happened sindgiskDuster’'s snapshots are subject to simple policies,
like “snapshot at fixed time intervals”, or “snapshot aftedisk writes”. For our exper-
iments, we use the second option, and snapshot when thetotdder of writes equals
10% of the disk size In practice, this occurred approximately every 10 hours.
Suspending the execution may lead to undesired consegjanch as time-outs on
network connections. To avoid such problemiskDuster implements live snapshots of
disk drives. Once it triggers a snapshbiskDuster creates a copy of the drive in the
background while the VM keeps running. During this procaeBsyrites to disk generate
a copy of the modified blocks to the snapshot before they araritied to disk.

3.7 Recovery and analysis

System recovery begins when the user has shut down the neadksnillustrated in
Fig. 3,DiskDuster starts by reverting the disk to a pre-infection state, tHesely mon-
itors infected processes to find out which files, folders andg@sses they influenced.

First, DiskDuster determines the initial intrusion moment, or more specificéhe
first disk write by a malicious process. In the case of an kttitected by DTA, the
intrusion moment is fixed exactly at the point where a good@se turns into a bad one.
If an AV software detects the infectiobjskDuster scans the logs for an operation that
modifies a disk block corresponding to a file matching the Ayhature. In either case,
DiskDuster replays disk operations which took place before the firsicimals write,
and it provides the user with a disk in a benign state.

Next, DiskDuster monitors offensive processes to log the data they influeBee-(
tions 3.4-3.5), and presents a user with a list of clean, asplisious §) files (malicious

! The blocks need not be unique, so we snapshot also if the same 2GB0OIGB drive are
written 10 times.
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data is removed automatically). To map clean and suspiclisksblocks to file names,
we use an ntfs library [25] to read the filesystem metadata fiee physical disk. We
extract the semantics of the filesystem to find the file namesponding to a block.

As the disk monitor works at the physical level, a block orkdian be located in
one of the following regions: (a) inside the filesystem ankbihging to the data run&
of afile, (b) inside the filesystem but in a free region (i.e.used by any file), (c) in the
filesystem’s metadata, or (d) outside the filesystem (éhg.region of physical sectors
0-63 used by the bootloader). The reason for tracking wotdside the file system
regions, is that these sectors are used by advanced mallaiiedL4.

The DiskDuster resolver provides a list of filenames for the blocks that bglto
filesystem objects like files, folders or metadata, and kedgdgional information (like
region mappings) for the other blocks. Normal users williteriested mainly in the file
names, but security professionals may be interested atbe iother information.

4 Evaluation

We now evaluate the effectivenessiigkDuster in recovering from attacks. We do not
focus on performance, other than to say that the slowdowfxti2ring analysis on the
replay side is no worse than that of other full-system DTAiSohs [4, 23, 6]. Moreover,
the overhead is sufficiently small to make the replay sidekge (in fact, previous
experiments in decoupled security show that even with DPAvdbwns of 100x, the
replayer keeps up with the production system, because dddn&ime boost [4, 10]).

In the remainder of this section, we uBiskDuster to recover from a variety of
attacks.

4.1 Experimental Setup

We ranDiskDuster on a machine with an Intel(R) Core(TM)2 Duo CPU E8400 @
3.00GHz, with 6MB cache, 4GB of RAM memory, and a SATA diskvdriThe oper-
ating system running on the host was Linux with kernel versdd.32. As the guest
we ran Windows XP with RAM memory size of 1GB, and a disk drit@GB with an
NTFS partition stored in theaw format.

4.2 Workloads

To evaluateDiskDuster, we observe how well it recovers from an attack which has hap-
pened at a point in the past. We assume that malware is aotieevfhile, and observe
how much data modified by the user in the time between thetinfeand the attack
DiskDuster can restore. To test with workloads that are both realistitrapeatable, we
recorded several real Windows XP sessions using ReMpasd replayed them once
the machine has been infected. The workloads contain tliveagse of a variety of
applications, including the Internet Explorer 6.0 web bsew the FoxIT PDF reader,

2 File content is made of data runs—lists of disk blocks with the actual contéiné dile
S \ww. r enouse. com
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the standard Windows Picture and Fax Viewer photo editatthe Notepad+%source
code editor. For the experiments in Sections 4.3-4.4, wdiusevorkloads, four short
ones (denoteth&- x), and one long one (denot&d- 1). The short ones are one hour
each with different activities with detailed descriptiqsse below), while the long one
captures three working days of a researcher in our lab.

e \\&- 1 - the user visits a number of webpages using IE 6.0 and stioeesointent of
several of them, only to reload them from disk later.

e \\&- 2 - using the FoxIT PDF reader, the user loads and reads sé®®raldocu-
ments.

e WS- 3 - the user writes and sends an email, downloads severatgsditom the web
(IE 6.0) and edits them with the Windows Picture and Fax Viegéeto editor.

e WE- 4 - in this session, the user writes a program using the Notepadurce code
editor and makes a drawing using MS Paint. In both cases sestores, reloads,
modifies and saves the work in several files.

e W.- 1 -in this session, the user engages in a wide variety of sievwtorresponding
to three full days of work.

4.3 Single step attacks

We first runDiskDuster with a set of straightforward attacks that do one or two thing
only—to verify that it can recover from malicious actionsseliation. For this purpose,
we compromised the system using a drive-by-download frortabfgoit (version 3.8.0-
dev) and ran the following test attacks at the start of thetstaarkloadsWs- 1,...,\&- 4

(in each case, we “detect” the compromised process aftetlgxane hour):

(A) Binary patch. The malware binary downloaded modifies the executable fike of
benign application (in this case, the IE 6.0 web browser,Rtvd T PDF reader,
and MS Paint binariespiskDuster performs the analysis, and reverts the binary to
its state before the attack.

(B) Persistent drive-by download.This time the malware adds a registry key to make
itself persistent across reboomsskDuster performs the analysis, removes the bi-
nary, and restores the registry to its state before thekattac

(C) File deletion. The downloaded malware deletes a file from diglskDuster per-
forms the analysis, removes the binary, and reverts the¢ioleleperation.

To evaluate the effectivenessbitkDuster, we perform two sets of measurements:
infection ratesandrecovery resultsinfection rates illustrate how quickly taint spreads
over the disk. We present the amounts of suspicious, maBc@nd untrusted disk data
over time. Recovery results show the status of the disk Bitd&bDuster performed the
analysis. We discuss how many benign files and folders a asesafely keep, and how
many suspicious ones she needs to scrutinize. We focus odatse but present results
for both\ Document s and Setti ngs, and\ W NDOWS.

Fig. 5—7 show the result of these tests. The graphs presesptiead of malicious,
suspicious and untrusted data on the whole disk over tintergan intervals), while the

4 http://notepad-plus-plus.org/



MB

MB

MB

13

tables count the files containing malicious and suspicigtesh The files are gathered
into two categoriesneed reviewandtemporary The user needs to scrutinize the for-
mer, while temporary files indicate data which she can flusthout any loss of work,
for example, the cache and thiest ory folder of IE 6.0, or thedl | cache folder of

the\ W NDOWS \ syst en82 directory.

Docum. and Settings WINDOWS
malicious EXE= WS File info Malicious | Suspicious|| Malicious [ Suspicioug
51 Sinusted . Files] KB |Files| KB [|Files| KB |Files| KB
4 1 [Needrevie| 6 | 6.03| O 0 33 [211.72 O 0
Ml i T 1 |Temporary || 5 |19.11] 0 | 0 5 |113.37 0 | O
S i kol 2 [Need revie| 0 0 1 [ 454 8 [169.67 13 [ 1.68
2+ 3 X 2 |Temporary 3 | 437| 4 | 1.64 4 1109.85 7 |0.61
L (0000 3 [Need revieW| 13 [782.23 0 0 38 (20317 0 | O
THPIREPD 3 |Temporary || 23 [120.07 O 0 5 /118.80 O 0
s % 9 %> & S % @ 4 [Needreview| 11 [374.68 2 |250.74| 27 [193.35 8 |35.87
ws-1 ws-3 ws-4 4 | Temporary 4 | 382| 5 |1881|| 6 |110.2Y4 1 |0.46
Fig. 5. The binary patch attack: infection rates and recovery results for fdori6ute workloads.
Docum. and Settings WINDOWS
malicious EXE= WS File info Malicious | Suspicious Malicious | Suspicious
o[ Suspicious - Files] KB |Files] KB |[Files] KB |Files| KB
1 |Need revie 1 19885 1 3.83 21 | 736.85| 37 |62.6]
1 |Temporary 8 |167.34 116| 789.45|| 1 0.03 2 | 8.96
B 2 |Need revie 0 0 1 | 10.14 7 |168.62| 21 | 6.55
I o= 2 |Temporary || 2 | 251 | 5 | 300 | 2 | 018 | 1 |0.18
1+ 3 [Need revie! 3 |102.27 12 |1183.06| 25 |1440.3§ 10 [56.02
3 |Temporary || 18 | 10.34| 8 |102.67|| 1 2.17 1 |3.43
0 ;””lo % S % @ & % @ © % o |4 |NeedrevieW| 3 24212 7 |377.20|| 15 | 727.69] 6 | 7.50
WS-1 WS-2 Wws-3 WS-4 4 | Temporary 7 | 9.03| 3 | 27.08 0 0 0 0
Fig. 6. The drive-by-download attack: infection rates and recovery resait$olur 60 minute
workloads.
s Docum. and Settings WINDOWS
‘4k malicious EXx% n WS| File info Malicious | Suspicioud| Malicious | Suspicioug
R [t Files] KB |Files| KB [[Files] KB [Files| KB
n 1 [Need revie 4 | 147] 0 0 32 [46.33 7 [39.00
m 1 |Temporary || 71 |452.20 1 [4456| 1 [3.50| O 0
-y 2 [Need revie 0 0 0 0 0 0 0 0
m 2 |Temporary 0 0 0 0 0 0 0 0
3 [Need reviey| 0 0 0 0 1 0 0 0
- 3 |Temporary || 0 0 0 0 |[0.02] O 0 0
5 ”[o s L 2 TNeedrevie}| 0 [ 0 [0 [ 0 [[0[ 0 [0 0
WS-1 WS-2 WS-3 WS-4 4 Temporary 0 0 0 0 0 0 0 0

Fig. 7. The file deletion attack: infection rates and recovery results for fouri60teworkloads.

We make a few observations. Firé§- 3 is more aggressive in spreading suspicious
and untrusted bytes. This makes sense, as the user dowalt@idamount of data and
then edits it. All these bytes are at least untrusted, angeiftrowser was malicious,
then all the edits and subsequent writes of these benigregses are suspicious. Sec-
ond, the three attacks have very different profiles in the ey spread malicious,
suspicious and untrusted bytes. This makes sense alsanasastacks make multiple
applications malicious, and thus spread more malicioussfg.g., the binary patch),
while others do not contain much malicious data at all (¢hg. file delete). Finally, we
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see that the number of files left malicious or suspicious ialltypically, these are
files downloaded by a malicious process and processed blermiocess. Most of the
user data was recovered.

4.4 Complicated, real-world attacks

In this section, we usBiskDuster to recover from four complex attacks involving real
world malware, including the Win32/Sality virus [29], thein82/Alureon trojan [17]
and the Win32/Hupigon backdoor [16]. We follow the advanedtéck scenario of
Fig. 2, and test four malicious binaries in step 4. After lghing an attack, we replay
the long workloadw- 1, which captures three working days (Section 4.2). We again
detect the attack at the end of the workload, promplisgDuster to start its analysis.

In each experiment, the user first infects IE 6.0 by visitingalicious website. We
use Metasploit's meterpreter to migrate the attack frombittosvser to another appli-
cation (e.qg., the calculator). It deletes the antivirusggpam, downloads new malware
to disk, and executes it. Apart from its normal malicious\éti¢s, the malware adds a
registry key to make itself persistent across reboots yptethe Documents folder on
disk, for ransom purposes, and deletes itself fromdisk all casespiskDuster was
able to restore the disk, undo the encryption, recover the@nner, etc.

In the remaining part of this section, we discuss the tedtedks in detail.

() Hupigon backdoor Win32/Hupigon [16] is a backdoor, which provides an at-
tacker with access to, and control of, an infected machingidbn registers its
component as a service.

(1) Sality virus Win32/Sality [29] infects executable files. It replaces traginal
host code at the entry point of the executable to redireatidian to the poly-
morphic viral code, which has been encrypted and insertatigriast section
of the host file. In addition, W32/Sality searches for spec#mgistry subkeys to
infect the executable files that run when Windows starts.

(1) Alureon trojan Win32/Alureon [17] is a trojan that allows attackers inept
Internet traffic in order to gather confidential informatisach as user names,
passwords, and credit card data. It may also allow to transmlicious data to
the infected computer.

(IV) Zhelatin email worm / rootkit Zhelatin [9] spreads in e-mails with war-related
subjects as an attachment named "video.exe”, "movie.€xétk me.exe” and
S0 on. After start-up, it drops a randomly named file into thes folder where
it was started from and runs it; this file installs a rootkitlg®p (peer-to-peer)
component into the Windows System folder. In addition, liskprocesses corre-
sponding to virus scanners.

Fig. 8-13 show the results of these tests. The graphs présespread of tainted
data on the whole disk over time. The tables count the filesagming malicious and
suspicious bytes for two attacks which perform lots of sysaetivities: the Win32/Sality
virus and the Win32/Zhelatin email worm/rootkit. Observattsimilarly to Section 4.3,

5 In record/replay, AV scanners can still detect it, as the full executiae tisaavailable.
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taint spreads quite aggressively, and it is again expeEmdexample, all files a mali-
cious IE 6.0 process stores in thenporary | nternet Fil es folder, become ma-
licious as well. Next, sinc®iskDuster reverts the disk to a pre-infection state (while
keeping most recent changes in the user directory), we dreonconcerned about the
taint in the system files. Finally, observe that the numbeatbér files is small—these
are again typically files downloaded by a malicious procesd, modified by another
one.

MB

'

malicious ===== z
suspicious
untrusted === -

[iN

0.1

Day 1 Day 2 Day 3
Fig. 8. The Win/32 Hupigon backdoor: infection rates for the- 1 workload.

MB

malicious =====
suspicious
untrusted ===

\
voond Y

Day 1 Day 2 Day 3
Fig. 9. The Win/32 Sality virus: infection rates for tWd_- 1 workload.

[Documents and Settinggdiskduster [[WINDOWS |
File info [ Malicious | Suspicioug]File info [ Malicious | Suspicious
|Files] KB |Files] KB || [Files] KB [Files] KB
Need review
My Documents 11 [25253.30 O 0 [[repair 2 (1433 1 | 0.21
Local Settings\Application Data 3 7.18 0 0 ||Microsoft.NET 24 110466 1 | 3.21
Documents and Settings 9 | 950.50| 1 |53.98|system32 53 1927.13 7 | 16.30
- - - - - WINDOWS 32 |173.08§ 6 |113.24
Temporary files
Local Settings\Temporary Internet Filgs65 | 566.79 | 1 16 |[|system32\dlicachd 14 |87.18 1 | 1.19
Local Settings\Temp 34| 7475 | 2 |6.52]|- - - - -
Local Settings\History 3 2385 | 1 |0.62||- - - - -
Recent 5 4.16 1 |1.19]|- - - - -

Fig. 10. The Win/32 Sality virus: recovery results for tiié- 1 workload. L S = Local Settings;
T | F = Temporary Internet Files

5 Limitations

As DiskDuster automatically recovers in the majority of cases and for wenyplicated
attacks, a valid question is: why not in all cases, and why eoagover user data only—
rather than the full system state? The answer is that thersudotle scenarios that are
problematic or impossible fdviskDuster to solve. They are related to implicit flows.



16

kY
ool

MB

malicious ===== -
................................. g USROG mm———n
r untrusted ===

[
-~

0.1
Day 1

Fig. 11. The Win/32 Alureon trojan: infection rates for tM&- 1 workload. (Due to some prob-
lems with the replaying software, we limit the results to one working day.)
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Fig. 12. The Win/32 Zhelatin email worm/rootkit: infection rates for Mie- 1 workload.

The first problematic scenario concerns implicit flow in tisei’s head. We already
discussed it in Section 2: a user makes a note (in a memo, Isay) #éne absence of an
AV scanner. As the information flows via the user’'s mibikkDuster cannot detect it.

The second problematic scenario concerns checksums ostdatéures with ma-
licious data. While not too common, the system occasionaljopms a calculation
over data structures that contain maliciol) (data. For instance, consider an OS-
level linked list with a checksum. Both malicious processed benign applications add
nodes to the list and update the checksum. Wher@igkDuster detects malware, the
recovery process removes all malicious nodes from theHmivever, doing so corrupts
both the list and its corresponding checksum. The correatragvould be to remove
the malicious nodes and all nodes dependent on the malic@mes, and then to restore
the checksum. This is not possible without detailed sero&ntbwledge about the list.
Unfortunately, since the OS sometimes stores such datzstes on disk, we may end
up with a corrupt system.

To ensure correctness in the presence of implicit fl@iskDuster currently restores
the entire file to an benign version if any part of the file isdlad malicious. This results
in correct recovery, but drops more benign writes thantbfricecessary.

Finally, there may be implicit dependencies on restored.fil@onsider again a
linked list manipulated by both malicious and benign prgessand a benign process
that reads a few benign nodes from the list and writes thentocaitog. As it does not

[Documents and Settinggdiskduster [J[WINDOWS |
File info [ Malicious | Suspicious][File info [ Malicious | Suspicious
|Files] KB [Files] KB ]| |Files] KB [Files] KB
eed review
My Documents 1 [17.50 1 | 4.80 |[repair 0 0 2 | 8.75
Userinfo 0 0 1 | 32.06||Microsoft NET 3 | 28.00 | 15 | 57.85
Cookies 0 0 2 | 72.95||system32 23 [1283.74 13 | 43.07
NTUSER.DAT 1 [1.20f O 0 WINDOWS 16 | 122.55| 20 [105.78

Temporary files

Local Setting§ Temporary Internet Filds 0 0 | 50 [702.98|system32dlicachg 9 | 77.00| 2 | 0.69
Local Setting§History 0 0 2 | 13.99]|- - - - -
Local Setting§Application Data 0 0 1| 159 (|- - - - -
ngcentan Tl AA 112D Z o o b i 0 H 0 51 3;@8; " I * 4 - b ol
FIg- s e wWinysZ2-Znefatmemai worm/rootkit: recovery resuits 10 et worktoad.
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readM or S data, it remains benign throughout its lifetime. At somenpdbiskDuster
restores the file with the linked list to a previous safe staseexplained above.

The problem is: what do we do with the benign process’ log flde2ause of the
implicit dependency on the file (and its malicious contenig cannot keep it as is,
lest we introduce inconsistencies. Thus, we track the fadtthe read accessed a file
thatDiskDuster restored, thus making the log file a candidate for restanatlso. And
so on. The additional roll-backs keep the system considbeihiagain lead to possibly
dropping a few more benign writes than strictly needed.

6 Related Work

Decoupled security check®ecording and replaying is used in many research projects [8
1,19]. Full decoupled security for virtual machines wasadticed by VMware [4],
and the model was quickly picked up by others (e.qg., for neopiiones [24] and fast
Xen VMs [33]). AfterSight [4] comes closest in spirit to thecord and replay side of
DiskDuster. However, all these systems differ frabiskDuster in that they limit them-
selves to attack detection and leave remediation to therasimator.

Data recovery Most automated attack recovery systems either focus sotefjata on
disks (much like advanced versioning systems), or rely enstipport of the target
OS—either in the form of a module inside the victim’s machitg,p, 11, 28, 32, 20,
14, 3], or a proxy [34, 28].

Many of these projects depend on external methods to iredtbatroot cause of an
infection, and to obtain high level semantics (e.g., the wawhich the OS uses the
password file, the dependencies between OS-level opesagtrn). Such information
facilitates the process of intrusion recovery, and aidsiitding dependency graphs [15,
11, 32, 14], and behavior models [20]. As a result, the aimalyscomes more detailed
than in systems which operate at the machine level DikkDuster.

However, since we cannot assume the integrity of the kefreehaonitored system,
it is possible that attacks hinder the analysis, for exanglenodifying the logs or
the dependency graphs. In contra3iskDuster carries out a comprehensive analysis
without relying on any kernel support whatsoever, and Isadtie to recover from very
sophisticated attacks. We now discuss the most relatedqisajn more detail.

In Wayback [5] versioning is automatic at the write levelcleavrite to the file cre-
ates a new version, so that access to any previous versiassshte. Wayback needs
knowledge about the filesystem and modifies the monitoretksysSimilarly, Back-
Tracker [15] is implemented inside the OS and tracks OS thjéextracts dependen-
cies between different components as the attack evolvesamgroduce dependency
graphs.

Taser [11] uses a kernel module to log kernel operations ocegses, filesystems
and the network for Linux systems. The analysis is decouplatl assumes that the
kernel of the monitored host is not compromised. Using thaasgic information it
constructs detailed dependency graphs to track data flows.

SEE [28] explores one way isolation for Linux processes—gsees do not share
the disk, and all their commits are written in different lboas. It achieves such iso-
lation by interpositioning at the level of system calls ahd virtual filesystem layer,
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using copy on write implemented as file copy operations. &by, it is a filesystem
proxy implemented as kernel modules that creates a shadesvfdr the process. At
the end of execution, it either commits or discards the chargased on user input.
Thus, the user must revieall changes. WitlDiskDuster users review only suspicious
data, whileDiskDuster restores the malicious bytes.

Paleari et al. [20] aim to generate remediation procedurgsitge infections from
a system, but the system can only recover system state arels@tem files of Win-
dows, and cannot handle deleted files. The system recortsygalls executed in the
emulated environment and infers behavior models based querees of the system
calls and their parameters.

Retro [14] is a recovery system for Linux that relies on a kémodule to generate
action history graphs. The design assumes that the kereslystem, checkpoints or
logs are always safe. Another crucial assumption is thatfieetion is discovered very
quickly, otherwise the graphs become too hard to manager Aétecting an infection,
the system reexecutes processes and may block if user smpeeded and wait for the
input in order to continue. In contragdjskDuster successfully recovers from attacks
that have been active for days.

Back to the Future [3] removes malware and helps users reypstems after an at-
tack. The implementation is Windows specific and requirgsitant user interaction.
The user needs to defiagoriori which is the trusted data and only modifications of this
data are logged. Moreover, the user has to decide what to dpeviar an untrusted pro-
gram interferes with a trusted program. The framework iscsle about the monitored
system calls and may also decide to terminate a process famohithe user.

7 Conclusion

We have describeDiskDuster, an attack analysis and recovery system capable of re-
moving all traces from complicated attackéskDuster relies on execution trace record-
ing, snapshotting, and especially taint analysis to tranta&code’s actions. Although

an attack may be detected long after the infectimiskDuster is able to roll back to the
initial point of infection and restore the disk to that stéife demonstrated the power of
our system with complicated and real-world attacks.

DiskDuster greatly helps the analysis of an attack by the classificaifdmytes lo-
cated on the physical drive into trusted, malicious and isi®ps(which may be the
result of implicit flows). UsingDiskDuster, the user can recover all post-attack data
which was not touched by the attack and is still clean.
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