
PixelVault: Using GPUs for Securing Cryptographic
Operations

Giorgos Vasiliadis
FORTH-ICS

gvasil@ics.forth.gr

Elias Athanasopoulos
FORTH-ICS

elathan@ics.forth.gr
Michalis Polychronakis

Columbia University
mikepo@cs.columbia.edu

Sotiris Ioannidis
FORTH-ICS

sotiris@ics.forth.gr

ABSTRACT
Protecting the confidentiality of cryptographic keys in the event
of partial or full system compromise is crucial for containing the
impact of attacks. The Heartbleed vulnerability of April 2014,
which allowed the remote leakage of secret keys from HTTPS web
servers, is an indicative example. In this paper we present Pixel-
Vault, a system for keeping cryptographic keys and carrying out
cryptographic operations exclusively on the GPU, which allows it
to protect secret keys from leakage even in the event of full system
compromise. This is possible by exposing secret keys only in GPU
registers, keeping PixelVault’s critical code in the GPU instruction
cache, and preventing any access to both of them from the host.
Due to the non-preemptive execution mode of the GPU, an adver-
sary that has full control of the host cannot tamper with PixelVault’s
GPU code, but only terminate it, in which case all sensitive data
is lost. We have implemented a PixelVault-enabled version of the
OpenSSL library that allows the protection of existing applications
with minimal modifications. Based on the results of our evaluation,
PixelVault not only provides secure key storage using commodity
hardware, but also significantly speeds up the processing through-
put of cryptographic operations for server applications.

Categories and Subject Descriptors
E.3 [Data]: DATA ENCRYPTION; D.4.6 [OPERATING SYS-
TEMS]: Security and Protection

Keywords
GPU; SSL/TLS; trusted execution; isolation; tamper resistance

1. INTRODUCTION
Servers have always been an attractive target for attackers, es-

pecially when they host popular web sites and online services, as
they typically contain a wealth of private user data and other sensi-
tive information. Encryption can be used as an additional layer of
protection for sensitive data, once a service has been compromised,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660316 .

but it is only effective as long as the keys involved in cryptographic
operations are kept secret. In fact, keys themselves are often the
target, as for example is the case with the infamous Heartbleed
bug [9]. The exploitation of Heartbleed, a buffer over-read vul-
nerability in OpenSSL, allows attackers to read arbitrary contents
from a server’s memory, including TLS private keys. Besides at-
tacks that leverage software vulnerabilities to disclose memory or
take complete control of the host, key recovery attacks can also
be mounted using direct memory access through Firewire [48] or
PCI [57]. Moving one step further, it has been demonstrated that
keys can be extracted by freezing memory chips and inspecting
their contents [23].

Once the secret keys are leaked, attackers can impersonate the
server (without triggering any browser warnings), or decrypt any
past and future captured encrypted data (unless perfect forward se-
crecy is used). Defenses that involve the in-memory obfuscation of
keys using dispersal techniques offer only partial protection, as at-
tackers can eventually break the obfuscation scheme with adequate
effort. To that end, it is crucial that, apart from the trusted oper-
ation of the underlying cryptographic implementation, secret keys
and other sensitive information is safely stored and protected from
leakage. It is important to ensure that a potential security flaw in
a service will not allow an adversary to get access to secret keys,
even if the service is fully compromised, as this can lead to further
catastrophic consequences [9, 10].

In order to address this problem, researchers have proposed sys-
tems that store all sensitive information in CPU registers and never
in main memory [21, 41, 56]. These approaches require a trusted
and bug-free component for ensuring that an adversary cannot com-
promise part of the system and eventually extract the secret keys
from the CPU registers. Unfortunately, however, with complex
services consisting of databases, web servers, and a multitude of
other software components and libraries, guaranteeing the absence
of bugs that may lead to system compromise is rather unrealistic.
For instance, a recent DMA attack against these systems has shown
that secret keys can be extracted from the CPU registers into the tar-
get system’s memory, and be retrieved using a normal DMA trans-
fer [12].

Another possible research direction for solving this problem is
through systems that support trusted computation in hostile operat-
ing systems [16, 26, 29]. These systems are designed as a generic
solution for protecting computation performed by any application,
even by non-sensitive ones, when the host is compromised. In such
a setting, a process responsible for cryptographically signing a mes-
sage would never expose its keys to the operating system, and there-
fore encryption remains functional even when the operating system
is compromised. However, these systems require applications to

run on top of a hypervisor [16, 26], introducing significant perfor-
mance overhead, or the addition of extra hardware abstraction lay-
ers and the re-compilation of the operating system [29]. Trusted
Platform Modules (TPMs), on the other hand, do not provide use-
ful support for the use case we consider. From a security stand-
point, TPMs provide limited cryptographic support (current imple-
mentations support only RSA, SHA1, and HMAC) [8], while from
a performance standpoint, their limited computational capabilities
make them inappropriate for carrying out intensive and continuous
cryptographic operations, such as handling a server’s TLS connec-
tions [1].

In this paper, we explore an alternative approach to the problem
of protecting a server’s cryptographic keys, which takes advantage
of the graphics card to exclusively i) store cryptographic keys and
other sensitive information, and ii) carry out all cryptographic op-
erations, without involving the CPU. Our prototype system, named
PixelVault, provides native GPU implementations of the AES [19]
and RSA [51] algorithms, and prevents key leakage even when the
base system is fully compromised. This is possible by exposing
private keys only in GPU registers, and keeping PixelVault’s criti-
cal code exclusively in the GPU instruction cache, preventing this
way even privileged host code from accessing any sensitive code
or data. We have implemented a PixelVault-enabled version of the
OpenSSL library, which allows the transparent protection of exist-
ing services without hardware modifications or operating system
recompilation. Multiple services can use the same GPU to perform
cryptographic operations, using the same or different certificates
(and secret keys), while trust is always given to a single hardware
entity—the GPU.

Our choice of the GPU for key storage is justified by its unique
properties, including (i) non-preemptiveness: all program code run-
ning on the GPU is never context-switched, and therefore, there is
no saved state in the host’s memory that could include information
associated with cryptographic keys; (ii) on-chip memory operation
only: the running GPU code is tamper-resistant in on-chip mem-
ory, and the associated cryptographic keys are never stored in ob-
servable memory, but only in non-addressable memory, such as the
registers of the GPU; (iii) transparency: the GPU is independent
from the host, so no hardware, operating system, or application
changes are required—just a modification of the standard crypto-
graphic libraries used, such as OpenSSL, which essentially implies
that legacy applications can fully take advantage of our system with
minimal effort; (iv) commodity component: GPUs are commod-
ity components and are cheaper than dedicated cryptographic hard-
ware; (v) performance: GPUs achieve high computational perfor-
mance for cryptographic operations, for applications in which they
can be parallelized.

The main contributions of our work are the following:

1. We present the design of PixelVault, a system for keeping
cryptographic keys and carrying out cryptographic operations
exclusively on the GPU, which allows it to protect secret keys
from leakage even in case the host is fully compromised.

2. We have implemented PixelVault using commodity GPUs
(NVIDIA’s GTX 480), and provide a PixelVault-enabled ver-
sion of the OpenSSL library.

3. We evaluate our prototype implementation in terms of se-
curity and performance. Our analysis suggests that Pixel-
Vault not only provides better protection, but also outper-
forms CPU-based solutions in terms of processing through-
put for server applications.

Multiprocessor N

Multiprocessor 2

SP

SP

SP

SP

SP

SP

SP

SP

Shared
Memory Cache

Reg

Multiprocessor 1

Gl
ob

al
M
em

or
y

CPU
(Host)

Host Memory

GPU

Figure 1: A simplified view of a typical graphics card memory
hierarchy.

2. BACKGROUND

2.1 GPU Architecture Overview
The computational capabilities of modern graphics processing

units in combination with their low cost makes them suitable for
general-purpose applications beyond graphics rendering [52,55,60,
61]. GPUs contain hundreds of processing cores that can be used
for general-purpose computation, facilitated by feature-rich frame-
works for general purpose computing on GPUs (GPGPU). For our
prototype implementation, we have chosen NVIDIA’s CUDA [42],
probably the most widely used GPGPU framework.

A fundamental difference between CPUs and GPUs is the de-
composition of transistors in the processor. A GPU devotes most
of its die area to a large array of arithmetic logic units (ALUs). In
contrast, most CPU resources serve a large cache hierarchy and a
control plane for the acceleration of a single CPU thread. A GPU
executes code in a data-parallel fashion, so that the same code path
is executed on different data at the same time. The code that the
GPU executes is organized in units called kernels. To exploit par-
allelism, the same kernel is launched by a vast amount of GPU
threads concurrently.

2.2 Memory Hierarchy
The NVIDIA CUDA architecture offers different memory spaces

and types, as illustrated in Figure 1. The host is responsible for
allocating memory for the GPU kernel from the global, constant,
and texture memory spaces of the graphics card. Allocated memory
can be accessed by the host through special functions provided by
the CUDA driver, and is persistent across kernel launches by the
same application. Both constant and texture memory are read-only,
are initialized by the host, and contain separate caches, optimized
for different uses. On devices with compute capability 2.x (and
higher) global memory accesses are also cached in L1–L3 caches.

Each GPU thread maintains its own local memory area, which
actually resides in global memory. Automatic variables declared
inside a kernel are mapped to local memory. In implementations
that do not support a stack, all local memory variables are stored at
fixed addresses. The parameter state space (.param) is used to (i)
pass arguments from the host to the kernel, (ii) declare formal in-
put and return parameters for device functions called during kernel
execution, and (iii) declare locally-scoped byte array variables that
serve as function call arguments, typically for passing large struc-
tures by value to functions. The location of the parameter space
is implementation-specific. In some implementations, kernel pa-
rameters reside in global memory, hence no access protection is
provided between parameter and global space in this case.

Compute capability (version) #registers per thread
1.x 128
2.x 63
3.0 63
3.5 255

Table 1: Maximum number of 32-bit registers per GPU thread
for different levels of CUDA support (compute capability).

NVIDIA Runtime

CUDA Application

Gdev Runtime

NVIDIA
Driver PSCNV Nouveau

GPU

Figure 2: Structure of CUDA applications on top of the
NVIDIA (closed-source) and Gdev (open-source) sets of
GPGPU runtime and driver software.

The shared memory (comparable with scratchpad RAM in other
architectures) provides very fast access, and is also shared between
the threads that belong to the same block. The size of shared mem-
ory is 64KB per warp, and is also used by the hardware-managed
L1 cache. Typical splits include either 16KB L1 / 48KB shared or
48KB L1 / 16KB shared. Finally, a set of registers (.reg state
space) provides fast storage locations. The number of registers is
limited, and will vary from platform to platform, as shown in Ta-
ble 1. Registers differ from the other state spaces in that they are
not fully addressable, i.e., it is not possible to refer to the address
of a register. When the limit is exceeded, register variables will be
spilled to global memory, causing changes in performance [47].

2.3 GPU Code Execution
A typical GPU kernel execution consists of the following four

steps: (i) the DMA controller transfers input data from host mem-
ory to GPU memory; (ii) a host program instructs the GPU to
launch the kernel; (iii) the GPU executes threads in parallel; and
(iv) the DMA controller transfers the resulting data from device
memory back to host memory. All these operations are performed
by the CPU using architecture-specific commands.

Although the architectural details of GPUs are not publicly avail-
able, there is an ongoing research that tries to unveil how these op-
erations are performed and to provide an in-depth understanding of
their runtime mechanisms [32,38]. Specifically, the GPU exposes a
memory-mapped region to the OS, which is the main control space
of the GPU, and is used to send commands. For example, to copy
data from host to device memory, a set of commands are sent to the
GPU that specify the source and the destination virtual addresses,
along with the mode of direct memory access (DMA). Similarly,
when a kernel is launched, another set of commands is composed
and sent to the GPU, specifying code and stack information.

CUDA applications can run either on top of the closed-source
NVIDIA CUDA runtime, or on top of the open-source Gdev run-
time [7]. The NVIDIA CUDA runtime relies on the closed-source

kernel-space NVIDIA driver and a closed-source user-space library.
Gdev also supports the NVIDIA driver, as well as the open source
Nouveau [3] and PSCNV [6] drivers. Figure 2 illustrates the soft-
ware stack of the CUDA and Gdev frameworks. Both frameworks
support the same APIs: CUDA programs can be written using the
runtime API, or the driver API for low-level interaction with the
hardware.

3. DESIGN OBJECTIVES
Challenges. There are two characteristics of the GPU execution
model that require careful consideration for designing a safe envi-
ronment for cryptographic keys. First, GPU kernels typically run
for a while, perform some computations and then terminate. Sec-
ond, GPUs do not contain hierarchical protection domains (similar
to the protection rings of CPUs).

Using this programming model, cryptographic keys should be
transferred to the GPU every time there is a request for an opera-
tion, otherwise a malicious GPU kernel, executed in between, could
attempt to extract sensitive information from the (unprotected) GPU
space. Unfortunately, transferring the keys every time implies that
they are already stored in a safe location, and are transferred se-
curely to the GPU via the PCIe bus, which is not the case.
Our solution. To overcome these challenges, we propose a design
that follows a different execution model from the typical GPGPU
execution. Instead of spawning a GPU kernel execution every time
a new cryptographic operation needs to be performed, the system
uses a fully autonomous GPU kernel that runs indefinitely, without
interruption. The GPU kernel continuously monitors a predefined
host memory region (shared with the CPU) for new requests, per-
forms the necessary computations, and transfers the results back.
In addition, we ensure that all clear-text sensitive keys reside in de-
vice memory that cannot be accessed from the host at any time.
Given the non-preemptive execution mode of GPUs, no other GPU
kernel can be loaded for execution as long as our autonomous GPU
kernel is running.

4. PixelVault
An overview of PixelVault’s operation is illustrated in Figure 3.

Applications use PixelVault’s OpenSSL-compatible API to perform
cryptographic operations. Private keys and other sensitive informa-
tion are kept in encrypted form in a KeyStore that resides in GPU
global, off-chip device memory. KeyStore entries are encrypted
with a master key that is exclusively stored in GPU registers (Pro-
tected Space), and cannot be accessed in any way by the host. To
perform a cryptographic operation, (i) the required (encrypted) key
is fetched from the KeyStore into the protected space of the GPU
registers, (ii) it is decrypted with the master key, and (iii) the actual
operation is performed on the input data.

In the following, we describe in detail various aspects of Pixel-
Vault’s architecture, and the design choices we made for ensuring
that sensitive information cannot be leaked to the host even in case
of full system compromise.

4.1 Non-Preemptive Execution
PixelVault is designed to keep secrets isolated from the host,

which may be vulnerable and could be compromised. Therefore, to
make PixelVault tamper resistant, it is important to ensure that all
associated code is independent from the host, and completely de-
coupled from any other (probably untrustworthy) system module.
Modern GPUs follow a non-preemptive execution model, which
means that only a single kernel can occupy the GPU at any time,
and the execution of a kernel can continue without interruption until

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-

2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

#define NREGS 64

__global__
void regextract(int *buf)
{
int val;
asm(".reg .u32 r<1>;");
asm("mov.u32 %0, r0;" : "=r"(val));
buf[threadIdx.x * NREGS + 0] = val;

}
code for sm_10
Function : _Z5regextractPi
/*0000*/ /*0x4000000100000007*/ IMUL32I.U16.U16 R0, R0L, 0x40;
/*0008*/ /*0x30020001c4100780*/ SHL R0, R0, 0x2;
/*0010*/ /*0x2000c80104200780*/ IADD R0, g [0x4], R0;
/*0018*/ /*0xd00e0005a0c00781*/ GST.U32 global14 [R0], R1;

Figure 4: The GPU kernel source code for extracting the contents of a single register, and the corresponding .text assembly snippet
produced by the cuobjdump tool [2].

tion of secret data, algebraic and statistical attacks can be used to
extract cryptography keys even among gigabytes of data [53].

To overcome the lack of sufficient protections for the off-chip
global device memory, one possibility is to store the secrets in
memory hierarchies that cannot be accessed directly from the host.
These types of memory include all kinds of auxiliary memory (tex-
ture cache, constant cache, L1–L3 cache, and shared memory) that
can only be accessed from the scope of a GPU kernel. However,
the contents of all these types of caches also reside in the off-chip
global device memory, and more importantly, the data stored there
cannot be managed by the programmer. It is not possible to ensure
that PixelVault’s data will remain in the cache indefinitely, as some
of it can occasionally be evicted.

In contrast, shared memory (comparable to scratch-pad memory
in other architectures) is managed directly by the programmer, by
explicitly storing data into it. The shared memory has kernel scope
life-cycle and the data stored there is shared between the threads of
a block. A GPU kernel executed from a different context cannot
retrieve them, because CUDA resets this memory during context
initialization [49]. However, we have verified that the contents of
shared memory can be retrieved by post-executed kernels that have
been spawned from the same CUDA context.

Fortunately, data stored in GPU registers cannot be retrieved,
as GPU registers are always initialized to zero every time a new
kernel is loaded on the GPU for execution, even from the same
CUDA context. This can be easily verified and demonstrated using
the following experiment. We create thread blocks that are enough
to occupy all available streaming cores, and initialize all available
GPU registers with a predetermined constant value, using inline
PTX assembly. We also mark the identifier of each stream pro-
cessor (SP) of which the registers have been initialized, by reading
the special purpose read-only register smid. If not all streaming
processors have been marked, the creation of new thread blocks
continues. To obtain the contents of the GPU registers afterwards,
we first reset the currently running kernel and launch a new one, us-
ing the commands found in gdev_nvidia_nvc0.c file of the
Gdev source tree [7]; other NVIDIA architectures require slightly
different commands. We only used the minimum set of commands
that are required for launching a new kernel. These include setting
local, shared, and global memory space; transferring parameters to
the constant memory space; setting grids, blocks, and barriers; and
setting the number of registers that are needed. The second kernel,
part of which is shown in Figure 4, simply reads the data from the
registers and writes it to a buffer allocated in global device memory.

Even when the GPU kernel is running as part of the same context,
all GPU registers are always initialized to zero.

The summary of protection levels for each memory type is shown
in Table 2. The global, constant, and texture memories provide
the weakest form of protection, as the data stored there can be
obtained—in certain occasions—even by different unprivileged pro-
cesses. The shared memory secures data accesses from different
processes, as its content is automatically reset whenever a new
CUDA context is created. Still, an adversary that has full control of
the PixelVault’s process can terminate the GPU kernel, and acquire
the contents of the shared memory by launching a malicious kernel
from the same CUDA context. The malicious kernel would simply
perform some cryptanalysis in the contents of the shared memory
to obtain the secret keys. Similar attacks can be performed in the
L1–L3 caches of the global device memory, as recent GPU archi-
tectures use the same hardware resources for the L1 cache and the
shared memory. In contrast, the hardware always resets the GPU
registers to zero every time a new kernel is loaded on the GPU for
execution, even from the same CUDA context. As such, in Pix-
elVault we only use registers to store secret and private keys in
clear-text form. In all other kinds of memory, keys are stored in an
encrypted form to prevent their exposure in case of leakage.

4.3 Preventing Code Modification Attacks
Normally, GPU code is initially stored in global device mem-

ory for the GPU to execute it. Still, there are three levels of in-
struction caching (icache), of sizes 4 KB, 8 KB, and 32 KB, re-
spectively [62]. Therefore, it is feasible to load the code to the
icache (by carefully exercising all different execution paths), and
then completely erase the code from global device memory, by
transferring dummy data to the corresponding global device mem-
ory region via DMA. The code then is not possible to be flushed
from the hardware-managed instruction cache—all code runs in-
definitely, and any interruption results in immediate termination,
which erases any existing state (as discussed in Section 4.1).

As long as the code fits in the icache, the program executes au-
tonomously, without fetching any new instructions from global de-
vice memory. Thus, the code is protected from tampering due to the
fact that icache is not addressable (and hence it cannot be accessed)
from the host, and most importantly, icache starts with a clean state
whenever a new kernel is loaded for execution—any previous data
is flushed. Consequently, adversaries cannot access the code and
extract any key, even if they are able to launch a malicious kernel.

A limitation of this approach is that the total size of the code
footprint should be small enough to fit in the dedicated icache. For-

Memory type Protection

Global Memory no protection; data can be acquired subsequently, even from a different CUDA context or process address space.
Constant Memory no protection; data can be acquired subsequently, even from a different CUDA context or process address space.
Texture Memory no protection; data can be acquired subsequently, even from a different CUDA context or process address space.
Shared Memory contents can be acquired by a subsequent GPU kernel that executes in the same CUDA context.
L1-L3 Cache contents can be acquired through Shared Memory, as L1 is used in common with Shared Memory.
Registers full protection; registers automatically reset to zero on each GPU kernel execution.

Table 2: Protection levels of each GPU memory type.

tunately, this is the case for our RSA and AES implementations.
The code footprint of the RSA encryption operation is 6.9 KB and
of AES encryption and decryption is 7.5 KB.

4.4 Key Storage
Due to the small number of available registers in current GPU

models (Table 1), only a few number of keys can be stored each
time. To overcome this space restriction, we use a separate Key-
Store array that can hold an arbitrary number of cryptographic keys.
The KeyStore resides in the global device memory and is encrypted
with a master key. The master key is stored in the GPU registers,
and thus only the GPU kernel can decrypt the KeyStore and retrieve
the actual keys. Therefore, even if adversaries manage to acquire
the KeyStore array from global device memory, they would only
get the encrypted contents, which are useless.

Each KeyStore entry is encrypted independently. To access an
encrypted key, PixelVault first transfers it to the GPU registers and
then decrypt it with the master key, which is permanently loaded
in the on-chip registers. This prevents an attacker from accessing
the keys by continuously snooping over the KeyStore array until
the moment it gets decrypted, and avoids leaving any unencrypted
copies of cryptographic keys in global device memory.

We should note that the KeyStore structure is only needed for
services that maintain a large number of private and secret keys. In
other cases, the KeyStore can be disabled, and PixelVault can be
configured to hold all keys in registers. This has the added ben-
efit of avoiding the extra overhead of fetching and decrypting the
cryptographic keys used from the KeyStore array.

4.5 Key Management
An aspect of our design that needs careful consideration is the

transfer of the KeyStore’s master key to the GPU registers, and the
loading of PixelVault’s native code in the instruction cache of the
GPU. These operations should be performed at an early stage of the
bootstrapping phase, before launching any user process or connect-
ing to the Internet—as also suggested in previous works [40,41]—
and preferably from a non-volatile storage device, such as an ex-
ternal USB flash drive. This approach exposes any sensitive infor-
mation on the CPU only for a minimal amount of time, which for
servers happens only rarely, whenever the system boots.

To exclude the possibility that the master key is not copied to an
intermediate buffer, before finally being transferred to the GPU,
we explicitly allocate a page-locked memory region that can be
accessed directly from the GPU. Otherwise, if a regular memory
buffer is used, the driver will have to copy the key to an internal
page-locked memory region, to which we do not have direct access
for erase it afterwards. After the key has been transferred to the
memory space of the GPU, it stored in the GPU registers, and all
instances of the key in the GPU’s and host’s memory are erased.

int GPU_AES_encrypt_cbc(int keyID,
unsigned char *in, unsigned char *out,
size_t nbytes, unsigned char *ivec);

int GPU_AES_decrypt_cbc(int keyID,
unsigned char *in, unsigned char *out,
size_t nbytes, unsigned char *ivec);

int GPU_AES_encrypt_cbc_batch(int* key,
unsigned char *in, unsigned char *out,
size_t *offsets, size_t *nbytes,
unsigned char *ivec, size_t total);

int GPU_AES_decrypt_cbc_batch(int* keyID,
unsigned char *in, unsigned char *out,
size_t *offsets, size_t *nbytes,
unsigned char *ivec, size_t total);

Figure 5: The OpenSSL-compatible API for the 128-bit AES-
CBC cipher. The first two functions process a single message
at a time and can be used transparently by legacy applications.
The last two functions process a batch of messages at a time,
and are better suited for throughput-oriented setups.

A user or an application can share certificates or secret keys with
the service by transferring them through the shared memory space.
Every new cryptographic key is stored sequentially in the KeyStore
array, and is identified by its index during data encryption and de-
cryption. The GPU uses the index to acquire the specified key from
the KeyStore array and perform the requested operation. However,
a service cannot access the keys directly, as they are stored en-
crypted. Therefore, even if an adversary manages to inject mali-
cious CPU code in the address space of the service, it is impossible
to acquire the clear-text keys.

5. IMPLEMENTATION
We have implemented PixelVault on Linux v3.5.0, on top of

the NVIDIA CUDA architecture v4.2 using the NVIDIA driver
v304.54. Our prototype implementation currently supports both
RSA and AES, and provides an OpenSSL-compatible API that en-
ables existing applications or services to easily be ported on top of
PixelVault with minimal modifications.

5.1 AES
We have ported AES-128 on the GPU, by storing the key and all

intermediate states in GPU registers. AES divides each plaintext
message into 128-bit fixed blocks and encrypts each block into ci-
phertext with a 128-bit key. The encryption algorithm consists of
10 rounds of transformations. Each round uses a different round
key generated from the original key using Rijndael’s key sched-
ule. We have chosen to derive the round key at each round, instead

int GPU_RSA1024_private_decrypt(char *in,
char *out, int rsaKeyID, size_t *offsets,
size_t *nbytes, size_t total);

int GPU_RSA1024_private_decrypt_batch(char *in,
char *out, int *rsaKeyID, size_t *offsets,
size_t *nbytes, size_t total);

Figure 6: The OpenSSL-compatible API for the 1024-bit RSA
cipher. The first function process a single message at a time,
and can be used transparently by legacy applications. The sec-
ond function process a batch of messages at a time, and is better
suited for high-performance setups.

of using pre-expanded keys. Although this approach incurs more
computational overhead, it reduces the number of registers needed.
Overall, we need 16 bytes for the key, 16 bytes for the round key,
and 16 bytes for the input block (which is modified in-place over
the rounds and eventually contains the output block). Part of the
remaining registers are used for local variables. The only data that
is written back to global, off-chip device memory after the input
block has been processed is the output block. This restrictive pol-
icy ensures that no sensitive information about the key is leaked to
global device memory.

Figure 5 shows PixelVault’s API functions for the CBC mode
of AES-128. The CBC-encryption mode has a dependency on the
result of the previous block, hence the encryption of the blocks of
a single message is axiomatically serialized. Nevertheless, each
thread can perform encryption operations using a different AES
key independently, as it contains its own register space. On the
other hand, CBC decryption can be parallelized at the block level,
as the result of the previous block is already known at decryption
time. Other modes of AES (such as ECB, CBC, and CTR) can be
implemented in a similar way without significant extra effort.

5.2 RSA
We have implemented the RSA decrypt function for 1024-bit

keys (Figure 6). We focused on the performance of RSA decryp-
tion for two reasons. First, RSA typically requires several decryp-
tion operations per key. Second, decryption is heavily used at the
server side, where runtime performance is more critical.

Our GPU implementation exploits parallelism at the message
level, similarly to previous GPU-based implementations [25, 30,
58]. For modular exponentiation, we use the Montgomery Mul-
tiplication for Multi-Precision Integers (CIOS method) [34], and
we apply the straightforward right-to-left method, similar to [58].
During exponentiation, each thread needs three temporary values of
(n+2) words each, where n is the size of the key in bits. The three
temporary values are used as input and output in a round-robin fash-
ion. Overall, 3 ∗ (n + 2) words are required, which results in 408
words for 1024-bit keys. Unfortunately, there is not always enough
space to hold all three temporary values in registers (see Table 1).
One solution is to store the three temporary values in shared mem-
ory. Each multiprocessor features up to 48 KB of shared memory,
which, in contrast to the off-chip global device memory, cannot
be accessed by the host. Even if adversaries manage to stop Pix-
elVault’s autonomous kernel and run a malicious one, they would
only retrieve a single static image of the shared memory.

Still, this does not pose a significant risk for two reasons: (a) this
requires very precise timing of the attack, and (b) even if the right
timing can be achieved, the obtained fraction of the key is too small

to pose a key leakage risk. The reason is that for any n, only the
least significant k bits of the key can be recovered, with a O(2k)
complexity. For example, if we assume that a Meet-in-the-Middle
attack is feasible for up to k = 128 in a reasonable time, then the
least 128 significant bits of the key are exposed to the adversary.
This amount of bits is far from being critical for revealing the en-
tire key, given that the critical limit for RSA is at least one fourth of
the key size [13]. To prevent even the above unlikely leak, we have
implemented an optional mode in which the intermediate values are
stored in shared memory in an encrypted form. Only those interme-
diate values that are needed are decrypted—within GPU registers
only— but with an additional cost. The encryption and decryption
of the intermediate states are performed in 16-byte chunks, using
the master key.

From the performance standpoint, previous work has shown that
the GPU is better utilized when several messages are processed at
once [24, 25, 30], which is also true for our implementation. To
achieve optimal performance, our GPU-based OpenSSL version
processes many messages in bulk. This is achieved by buffering
several messages and transferring them to the GPU at once for par-
allel processing. Recall that each thread can perform encryption
and decryption operations using a different key independently, as it
contains its own register space.

6. EVALUATION

6.1 Security Analysis
We now evaluate the security properties of PixelVault by describ-

ing possible attacks, and showing how our proposed design protects
against them. For some of the attacks, we used the Gdev frame-
work [7], as it is open-source and provides more insights about
low-level operational details than the official closed-source CUDA
runtime.

6.1.1 Host Memory Attacks
We have implemented RSA and AES in a way that nothing but

the scrambled output block is ever written into host memory. This
is feasible, as GPUs maintain their own discrete memory spaces
for manipulating input data. When the GPU has performed the
desired cryptographic operation, the resulting output is transferred
back to host memory. In the meantime, GPU execution contin-
ues completely isolated from the CPU, without being affected by
side effects of the OS or the hardware, such as interrupt handling,
scheduling, swapping, and ACPI suspend modes. As a result, keys
or any intermediate states are never transferred indirectly to host
memory.

6.1.2 Extracting Intermediate States
As we described in Section 4.4, secret and private keys reside

unencrypted only in GPU registers. However, encryption and de-
cryption operations take place in global device memory, which is
accessible from the host via the PCIe interconnect. Therefore, it is
possible for an adversary to perform cryptanalysis from any inter-
mediate states extracted from the global device memory.

To defend against cryptanalysis, we perform both AES and RSA
exclusively in on-chip memory. In particular, after a plaintext block
is read from global device memory, nothing but the scrambled out-
put block is written back. Essentially, no valuable information
about the key or intermediate state is visible in the global device
memory at any time. To ensure that no intermediate state resides
in global memory, we stage data to the on-chip shared memory,
which is not accessible by the host. Even in case an adversary ter-
minates the GPU program and successfully acquires the contents of

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)

1 1632.7 15.5 15.3 14.3
16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

Number of Messages

1 16 64 128 1024 4096

T
hr

ou
gh

pu
t (

G
bi

t/s
)

0

1

2

3

GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

T
hr

ou
gh

pu
t (

G
bi

t/s
)

0

1

2

3

CPU

(a) Encryption.

Number of Messages

1 16 64 128 1024 4096

T
hr

ou
gh

pu
t (

G
bi

t/s
)

0

1

2

3

4

5

6

Number of Messages

T
hr

ou
gh

pu
t (

G
bi

t/s
)

0

1

2

3

4

5

6

(b) Decryption.

Figure 7: Sustained throughput for 128-bit AES-CBC.

tion, as the autonomous execution of the GPU does not add any
extra overhead. Enabling the KeyStore adds a small overhead—
ranging between 1–15%—to the overall PixelVault performance.
This is due to the copying of each key from the KeyStore array to
the registers and its decryption. The RSA key is decrypted using
the AES implementation that offers execution times proportionally
smaller compared to the RSA implementation. In addition, a signif-
icant part of the overall time is spent on PCIe transfers, and thus the
overhead introduced by the KeyStore mechanism is ameliorated.

We note that the implementation of the RSA algorithm is based
on the work of Harrison and Waldron [25]. Further optimizations
have been proposed since then, which could boost performance
even further. For example, Jang et al. [30] report that with 16 mes-
sages, the performance of the GPU is equal to that of the CPU, in
contrast to our implementation which needs about 110 messages to
match the CPU performance. We are currently working on inte-
grating these optimizations into our prototype implementation.

Figure 7 shows the performance of AES-CBC on a single CPU
core (horizontal line), as well as on the GPU and using PixelVault
(bars). We fix the message size to 16KB, the largest size sup-
ported by SSL, and increase the number of messages from 1 to
4096. The encryption mode of AES (Figure 7(a)) cannot be paral-
lelized at the block level, and thus a sufficient number of messages
is required to sustain acceptable performance. When using a single
message, AES-enc achieves 17.4 Mbit/s, which gradually increases
to 273.6 Mbit/s when processing 16 messages, and 3.4 Gbit/s for
4096 messages. Again, PixelVault achieves almost the same per-
formance as the default GPU-based AES implementation. How-

ever, the performance decreases to 3 Gbit/s when the KeyStore is
enabled, yielding a 13% decrease. The size of the AES keys is pro-
portionally smaller compared to the size of the messages (indica-
tively, 16 bytes for AES-128), hence the copying and decryption of
each key is quick, compared to the ciphering operations that fol-
low. The CPU implementation achieves 1.1 Gbit/s and 1.2 Gbit/s
for encryption and decryption, respectively, on a single CPU core.

In contrast, the decryption mode of AES ((Figure 7(b))) can be
parallelized at the block level and achieves 753.2 Mbit/s even when
processing a single message at a time. The peak performance of
AES-dec is 5.5 Gbit/s when processing 4096 messages at once. The
KeyStore adds a 20% overhead, limiting performance to 4.5 Gbit/s.
Modes that can be parallelized at the block level, such as CTR, have
a similar performance behaviour.

7. DISCUSSION AND LIMITATIONS
Dedicated GPU execution. PixelVault requires a dedicated GPU
that is used exclusively for protecting secret keys and carrying out
cryptographic operations. As a result, the GPU cannot be used
by other programs or the OS for other purposes, e.g., for graph-
ics rendering or general-purpose computations. Fortunately, recent
advances in CPU architectures show that current CPU chips are al-
ready equipped with integrated graphics processors, e.g., the AMD
APU [31] or the Intel HD Graphics [20]. In such cases, the inte-
grated GPU can be used for performing any graphics-related oper-
ation; otherwise, a second, separate, GPU should be acquired and
placed on a different PCIe slot. As PixelVault is mostly tailored to
server applications, which typically run on headless machines, the
requirement of a dedicated GPU is not a limiting factor.
Portability. Our design is based on current GPU architectures that
maintain (primarily) two basic properties: (i) non-preemptiveness
and (ii) on-chip memory operation only. These two properties are
available to all official CUDA-enabled NVIDIA models (released
after 2006 and onwards). We note though that our design may be
generalized to other computational devices as well, as long as they
maintain the same properties.
Misusing PixelVault for encrypting/decrypting messages. Pix-
elVault cannot verify whether a request for an operation has been
received from a benign or a malicious user. As a result, an attacker
who has compromised the base system could leverage PixelVault
to encrypt and decrypt messages. Still, the adversary cannot steal
any key stored in PixelVault.
Generation of secret keys or key pairs at run-time. Many ser-
vices require the creation of session keys or key pairs at run-time.
For example, SSL-enabled services create a new secret key after
the client has verified the server’s certificate. Although the leak-
age of session keys is not considered as critical as the leakage of
secret keys, creating secret keys or key pairs in a secure way is def-
initely a desirable functionality. PixelVault can easily provide this
functionality by generating new keys in the on-chip memory, and
securely storing them in the KeyStore structure. The service that
requested the keys can refer to each generated key by its unique
ID that is returned by PixelVault, and easily use them to encrypt or
decrypt messages. We plan to implement this functionality in the
near future.
TPMs. Trusted Platform Modules (TPMs) provide security-critical
functions, such as secure storage and attestation of platform state
and identities, and are mainly used to authenticate the base platform
during the bootstrapping phase or generating hardware-protected
key pairs. However, due to their limited storage space (the PC
TPM specification mandates only 1,280 bytes of NVRAM [8]),
their limited support of cryptographic algorithms (current version
supports only RSA, SHA1, and HMAC) [8], and their low perfor-

mance (about 1.4 SSL handshakes per second [1]), they are not ap-
propriate for carrying out intensive and continuous cryptographic
operations, such handling a server’s many concurrent TLS connec-
tions [1]. In contrast, PixelVault provides a fully programmable, se-
cure, and fast framework for performing cryptographic operations,
while ensuring that no secret or private key will leak even when the
base system is fully compromised.
Denial-of-Service Attacks. Adversaries who have compromised
the base system can easily disrupt the operation of PixelVault. For
example, they can easily delete or modify input or output data by
accessing the shared page-locked memory region, kill or suspend
the execution of PixelVault, or terminate the interconnection of the
GPU with the base system by sending a PCIe reset. As the main
purpose of PixelVault is to protect secret keys, defending against
these attacks is out of the scope of this work.
GPU Kernel Execution Timeouts. Due to the non-preemptive
execution of GPUs, most operating systems use kernel execution
timeouts to prevent system hangs when the GPU is also used for
display rendering. Hence, any operation that is executed on a GPU
with a display for more than a few seconds will be killed to ensure
proper display rendering. PixelVault requires a dedicated GPU,
hence we explicitly disable the kernel execution timeout through
the graphics driver interface, to ensure that it will never terminate.
An attacker might be able to terminate PixelVault’s kernel by set-
ting this timeout. However, this will only result in a DoS attack,
similar to those described in the previous paragraph—no key will
be leaked, given that GPU registers are erased upon termination.
Side-channel Attacks. It has been demonstrated that software
side-channel attacks are possible based on inter-process leakage
through the state of the memory cache of the CPU [22, 59]. These
attacks allow an unprivileged process to attack other processes that
run concurrently on the same processor, despite partitioning meth-
ods such as memory protection, sandboxing, and virtualization.
Certain types of these attacks can be quite powerful, as they rely on
merely monitoring the cache effects of cryptographic operations.
PixelVault raises the bar against cache-based attacks, since only
one kernel occupies the GPU at a time; no other GPU kernel can be
executed in parallel to monitor the behavior of the cache.

In addition, timing attacks enable an attacker to extract secrets
by observing the time it takes for a system to respond to various
queries [11,14,35]. Although defending against this type of attacks
is out of the scope of this work, a possible approach to enhance
PixelVault against them is to implement all sensitive operations so
that they consume a constant number of cycles, irrespectively of
any combination of key and data, so as to make any timing based
analysis hard [28].
Cold-boot Attacks. It has been demonstrated that keys can be ex-
tracted by freezing memory chips and inspecting their contents [23],
an attack widely known as cold boot attack. It is hard to assess
whether cold boot attacks are applicable on GPUs. We speculate
that this might be possible, as graphics cards can be removed with
the same ease as RAM DIMMs. PixelVault, however, is not vul-
nerable to cold boot attacks, because nothing sensitive is stored in
DRAM—keys are only exposed in registers.

8. RELATED WORK
Many research works have focused on the implementation of

cryptographic operations using GPUs [24, 25, 30]. Their data par-
allel architecture makes them attractive for the implementation of
both symmetric and asymmetric cryptographic algorithms. The
majority of these approaches has focused extensively on the imple-
mentation of widely-used cryptographic algorithms, such as AES
and RSA. Cook et al. [18] describe an implementation of AES on

an NVIDIA GeForce3 card, which provides little programmability.
Szerwinski et al. [58] describe implementations of 1024 and 2048-
bit modular exponentiations based on both the radix and RNS ap-
proaches, using an NVIDIA 8800GTS. Harrison et al [25] present
a GPU implementation of a 1024-bit RSA decrypt primitive, out-
performing a comparable CPU implementation by up to 4 times.

Besides performance, little focus has been placed on increas-
ing the security of cryptographic implementations using GPUs, al-
though the potential of modifying the GPU to a minimal secure
computing base is not new. Cook et al [17] presented a mecha-
nism to transfer encrypted video that is only decrypted once on the
GPU. Based on this idea, our key insight is to demonstrate that the
cryptographic operations executed on the GPU cannot only benefit
in terms of performance, but also in terms of security, by keeping
sensitive keys away from the CPU and the host memory.

Privilege separation is a good practice to restrict the number of
operations executed with elevated privileges. Applications should
be designed with the principle of least privilege, i.e., every op-
eration should be executed with the minimum level of privileges.
Provos et al. [50] demonstrate the value of privilege separation in
OpenSSH. Privman [33] provides an API that can be used to inte-
grate privilege separation into existing applications. Privtrans [15]
allows the automatic integration of privilege separation, with the
aid of a few annotations by the programmer. However, it has been
shown that sensitive data or system objects (e.g., memory, the en-
vironment, memory mappings, file system information, and file de-
scriptors) may still be leaked when, for instance, a trusted process
of a partitioned application spawns an untrusted child process [54].

Many reseach efforts have recently focused on systems that sup-
port trusted computation in hostile operating systems [16, 26, 29].
These systems are designed towards a generic solution for protect-
ing computation performed by any application, even by non sen-
sitive ones, when the host is compromised. In such a setting, a
process responsible for cryptographically signing a message would
never expose its keys to the operating system, and therefore encryp-
tion will remain functional even when the operating system is com-
promised. Unfortunately, these systems require applications run-
ning in a hypervisor [16, 26], introducing significant performance
overhead, or the addition of extra hardware abstraction layers and
the re-compilation of the operating system [29]. We anticipate
that these approaches will be eventually incorporated in commod-
ity operating systems in the future. Nevertheless, in this paper, we
seek for a less intrusive approach, that requires little modifications
in current commodity systems, does not allow for trusted system-
wide computation, but allows sensitive information, such as crypto-
graphic keys, to remain secret, even when the host is compromised.

Similar to our purposes, recent work has pursued the idea of
holding the cryptographic key solely in the registers of the CPU,
for AES [41, 56] and RSA [21]. The secret key, then, cannot be
traced in main memory, making cold boot attacks pointless. These
approaches require a trusted and bug-free component for ensuring
that an adversary cannot compromise part of the system and extract
the keys from the CPU registers. Still, a DMA-capable adversary,
with read and write access to the host physical memory, can extract
the secret keys from the CPU into the target system’s memory, from
which they can be retrieved using a normal DMA transfer [12].

On the opposite aspect, many works talk about the danger of
leaking data when offloading tasks to the GPU, in multi-user or
virtualized environments [37, 49]. Di Pietro et al. [49] talk about
the danger of leaking data from specific GPU memory hierarchies,
namely the shared memory and global memory. They also mention
that the registers contents can be exposed in cases where the devel-
oper declares more registers than the GPU contains; in such cases

where the GPU runs out of hardware registers, it can transparently
leverage global memory (“register spilling” [39]). To rule out this
possibility, PixelVault declares as many registers as the unterlying
hardware device provides, and force the compiler to explicitly no-
tify if any register spilling occurs. Similarly, Maurice et al. [37] an-
alyze the behavior of GPU global memory and show that an adver-
sary can recover data of a previously executed GPGPU application
from the global device memory. In contrast with these works, we
focus on memory hierarchies that provide a safe house for storing
data, preventing any leakage. Such memories, include the hardware
registers and the instruction caches, that are contained in modern
graphics processors. By carefully leveraging these memory types
in combination with the nonpreemptiveness execution model of the
GPUs (that guarantees that no state will be stored somewhere else
due to context-switching), we have managed to design a prototype
architecture, namely PixelVault that is tamper resistant and also of-
fers a secure environment for storing secrets.

Finally, Intel recently introduced SGX (Software Guard Exten-
sions) [27], a set of new CPU instructions for establishing private
memory regions. SGX allows an application to instantiate a pro-
tected container, which is a protected area in the application’s ad-
dress space that provides confidentiality and integrity even in the
presence of privileged malware. SGX could potentially be used to
implement similar functionality to PixelVault, using an SGX con-
tainer for secure storage, and taking advantage of the CPU’s cryp-
tographic instructions. In the future, it would be interesting to com-
pare the performance and characteristics of the two approaches.

9. CONCLUSION
We have presented the design and implementation of PixelVault,

a GPU-based system that implements AES and RSA in a way that
preserves the secrecy of keys even against attacks that fully com-
promise the host system. By taking advantage of the capabilities of
modern graphics processing units (GPUs), PixelVault safely stores
any sensitive information and offloads computationally-intensive
cryptographic operations on the GPU. The underlying idea is to
perform cryptographic operations entirely on the GPU, without in-
volving the host or any memory that can be accessed by the host
(even with full administrator permissions). This implies that (a)
no secret key (nor the key schedule or intermediate states) ever
get to host-accessible memory, and (b) GPU memory—where keys
are stored—cannot be inspected while cryptographic operations are
carried out. Our only requirement is that the system is initially
bootstrapped in a trusted environment. Once GPU storage is ini-
tialized with the keys, PixelVault prevents key leakage even in case
of full system compromise. As part of our future work, we plan
to adapt our framework to other ciphers and application domains,
and also to explore the design of a generic GPU-based framework
for facilitating privilege partitioning of existing applications. We
also plan to explore how our techniques could be applied in mobile
and embedded devices. This may be harder to achieve though, as
our design requires a dedicated GPU—otherwise the mobile device
would not be able to render graphics properly.

Acknowledgments
We would like to thank our shepherd Roberto Di Pietro and the
anonymous reviewers for their valuable feedback. This work was
supported in part by the General Secretariat for Research and Tech-
nology in Greece with a Research Excellence grant, by the FP7-
PEOPLE-2010-IOF project XHUNTER No. 273765, and by the
FP7 projects NECOMA and SysSec, funded by the European Com-
mission under Grant Agreements No. 608533 and No. 257007.

10. REFERENCES
[1] Benchmarking TPM-backed SSL. http://blog.

habets.pp.se/2012/02/Benchmarking-TPM-
backed-SSL.

[2] CUDA Binary Utilities. http://docs.nvidia.com/
cuda/cuda-binary-utilities/index.html.

[3] Nouveau: Accelerated Open Source driver for nVidia cards.
http://nouveau.freedesktop.org/.

[4] NVIDIA Developer Forums - CUDA kernel timeout.
https://devtalk.nvidia.com/default/
topic/417276/cuda-kernel-timeout/.

[5] OpenSSL Project. http://www.openssl.org/.
[6] pscnv - PathScale NVIDIA graphics driver. https://

github.com/pathscale/pscnv.
[7] shinpei0208 / gdev. https://github.com/

shinpei0208/gdev.
[8] TCG PC Client Specific - TPM Interface Specification (TIS)

Version 1.2. http://www.
trustedcomputinggroup.org/files/
resource_files/87BCE22B-1D09-3519-
ADEBA772FBF02CBD/TCG_
PCClientTPMSpecification_1-20_1-00_
FINAL.pdf.

[9] The Heartbleed Bug. http://heartbleed.com/.
[10] Who holds the encryption keys? http://www.

computerworld.com/s/article/9225414/Who_
Holds_the_Keys_.

[11] D. J. Bernstein. Cache-timing Attacks on AES, 2004.
[12] E.-O. Blass and W. Robertson. TRESOR-HUNT: Attacking

CPU-bound Encryption. In ACSAC, 2012.
[13] D. Boneh, G. Durfee, and Y. Frankel. An Attack on RSA

Given a Small Fraction of the Private Key Bits. In Lecture
Notes in Computer Science, volume 1514 of Lecture Notes in
Computer Science, pages 25–34. Springer, 1998.

[14] D. Brumley and D. Boneh. Remote Timing Attacks are
Practical. In USENIX Security, 2003.

[15] D. Brumley and D. Song. Privtrans: Automatically
Partitioning Programs for Privilege Separation. In USENIX
Security, 2004.

[16] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: A Virtualization-based Approach to
Retrofitting Protection in Commodity Operating Systems. In
ASPLOS XIII, 2008.

[17] D. Cook, R. Baratto, and A. Keromytis. Remotely Keyed
Cryptographics Secure Remote Display Access Using
(Mostly) Untrusted Hardware. In ICICS, 2005.

[18] D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck.
CryptoGraphics: Secret Key Cryptography Using Graphics
Cards. In CT-RSA, 2005.

[19] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998.
[20] Eliseo Hernandez. Accelerate Performance Using OpenCL

with Intel HD Graphics. http://software.intel.
com/en-us/articles/accelerate-
performance-using-opencl-with-intel-hd-
graphics.

[21] B. Garmany and T. Müller. PRIME: Private RSA
Infrastructure for Memory-less Encryption. In ACSAC, 2013.

[22] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice.
In IEEE S&P, 2011.

http://blog.habets.pp.se/2012/02/Benchmarking-TPM-backed-SSL
http://blog.habets.pp.se/2012/02/Benchmarking-TPM-backed-SSL
http://blog.habets.pp.se/2012/02/Benchmarking-TPM-backed-SSL
http://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
http://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
http://nouveau.freedesktop.org/
https://devtalk.nvidia.com/default/topic/417276/cuda-kernel-timeout/
https://devtalk.nvidia.com/default/topic/417276/cuda-kernel-timeout/
http://www.openssl.org/
https://github.com/pathscale/pscnv
https://github.com/pathscale/pscnv
https://github.com/shinpei0208/gdev
https://github.com/shinpei0208/gdev
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://heartbleed.com/
http://www.computerworld.com/s/article/9225414/Who_Holds_the_Keys_
http://www.computerworld.com/s/article/9225414/Who_Holds_the_Keys_
http://www.computerworld.com/s/article/9225414/Who_Holds_the_Keys_
http://software.intel.com/en-us/articles/accelerate-performance-using-opencl-with-intel-hd-graphics
http://software.intel.com/en-us/articles/accelerate-performance-using-opencl-with-intel-hd-graphics
http://software.intel.com/en-us/articles/accelerate-performance-using-opencl-with-intel-hd-graphics
http://software.intel.com/en-us/articles/accelerate-performance-using-opencl-with-intel-hd-graphics

[23] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest We Remember: Cold-boot Attacks on
Encryption Keys. Communications of the ACM, 52(5):91–98,
2009.

[24] O. Harrison and J. Waldron. Practical Symmetric Key
Cryptography on Modern Graphics Hardware. In USENIX
Security, 2008.

[25] O. Harrison and J. Waldron. Efficient Acceleration of
Asymmetric Cryptography on Graphics Hardware. In
AFRICACRYPT, 2009.

[26] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure Applications on an Untrusted
Operating System. In ASPLOS, 2013.

[27] Intel. Software Guard Extensions Programming Reference.
https://software.intel.com/sites/
default/files/329298-001.pdf.

[28] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Cryptography with Constant Computational Overhead. In
STOC, 2008.

[29] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost:
Protecting Applications from Hostile Operating Systems. In
ASPLOS, 2014.

[30] K. Jang, S. Han, S. Han, K. Park, and S. Moon. SSLShader:
Cheap SSL Acceleration with Commodity Processors. In
NSDI, 2011.

[31] Jon Stokes. AMD reveals Fusion CPU+GPU, to challenge
Intel in laptops. http://arstechnica.com/
business/2010/02/amd-reveals-fusion-
cpugpu-to-challege-intel-in-laptops/.

[32] S. Kato. Implementing Open-Source CUDA Runtime. 2013.
[33] D. Kilpatrick. Privman: A Library for Partitioning

Applications. In FREENIX, 2003.
[34] C. Koc, T. Acar, and J. Kaliski, B.S. Analyzing and

Comparing Montgomery Multiplication Algorithms. Micro,
IEEE, 16(3):26–33, 1996.

[35] P. C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In CRYPTO
’96, 1996.

[36] Luitjens, Justin and Rennich, Steven. CUDA Warps and
Occupancy. http://on-demand.gputechconf.
com/gtc-express/2011/presentations/cuda_
webinars_WarpsAndOccupancy.pdf, 2011.

[37] C. Maurice, C. Neumann, O. Heen, and A. Francillon.
Confidentiality Issues on a GPU in a Virtualized
Environment. In FC, 2014.

[38] K. Menychtas, K. Shen, and M. L. Scott. Enabling OS
Research by Inferring Interactions in the Black-box GPU
Stack. In USENIX ATC, 2013.

[39] P. Micikevicius. Local Memory and Register Spilling.
http://on-demand.gputechconf.com/gtc-
express/2011/presentations/register_
spilling.pdf.

[40] T. Müller, A. Dewald, and F. C. Freiling. AESSE: A
Cold-boot Resistant Implementation of AES. In EuroSec,
2010.

[41] T. Müller, F. C. Freiling, and A. Dewald. TRESOR Runs
Encryption Securely Outside RAM. In USENIX Security,
2011.

[42] NVIDIA. CUDA Programming Guide, version 4.0.
http://developer.download.nvidia.com/

compute/cuda/4_0/toolkit/docs/CUDA_C_
Programming_Guide.pdf.

[43] NVIDIA. Dynamic Parallelism in CUDA. http://
developer.download.nvidia.com/assets/
cuda/files/CUDADownloads/TechBrief_
Dynamic_Parallelism_in_CUDA.pdf.

[44] NVIDIA. Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/content/PDF/
fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf.

[45] NVIDIA. NVIDIA’s Next Generation CUDA Compute
Architecture: Kepler GK110. http://www.nvidia.
com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf.

[46] NVIDIA Developer Zone. Flushing Instruction Cache on
GPU. https://devtalk.nvidia.com/default/
topic/467841/flushing-instruction-cache-
on-gpu/.

[47] NVIDIA Developer Zone. PTX ISA :: CUDA Toolkit
Documentation. http://docs.nvidia.com/cuda/
parallel-thread-execution/index.html.

[48] D. R. Piegdon and L. Pimenidis. Targeting Physically
Addressable Memory. In DIMVA, 2007.

[49] R. D. Pietro, F. Lombardi, and A. Villani. CUDA Leaks:
Information Leakage in GPU Architectures. ArXiv, May
2013.

[50] N. Provos, M. Friedl, and P. Honeyman. Preventing Privilege
Escalation. In USENIX Security, 2003.

[51] R. L. Rivest, A. Shamir, and L. Adleman. A Method for
Obtaining Digital Signatures and Public-key Cryptosystems.
Communications of ACM, 21, February 1978.

[52] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: Operating System Abstractions to
Manage GPUs as Compute Devices. In SOSP, 2011.

[53] A. Shamir and N. v. Someren. Playing ’Hide and Seek’ with
Stored Keys. In FC, 1999.

[54] U. Shankar and D. Wagner. Preventing Secret Leakage from
fork(): Securing Privilege-Separated Applications. In ICC,
2006.

[55] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:
Integrating a File System with GPUs. In ASPLOS, 2013.

[56] P. Simmons. Security through Amnesia: A Software-based
Solution to the Cold-boot Attack on Disk Encryption.
Technical report, 2011.

[57] P. Stewin and I. Bystrov. Understanding DMA Malware. In
DIMVA, 2013.

[58] R. Szerwinski and T. Güneysu. Exploiting the Power of
GPUs for Asymmetric Cryptography. In CHES, 2008.

[59] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache
Attacks on AES, and Countermeasures. Journal of
Cryptology, 23, 2010.

[60] G. Vasiliadis, L. Koromilas, M. Polychronakis, and
S. Ioannidis. GASPP: A GPU-Accelerated Stateful Packet
Processing Framework. In USENIX ATC, 2014.

[61] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. MIDeA: A
Multi-Parallel Intrusion Detection Architecture. In CCS,
2011.

[62] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying GPU Microarchitecture through
Microbenchmarking. In ISPASS, 2010.

https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
http://arstechnica.com/business/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
http://arstechnica.com/business/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
http://arstechnica.com/business/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/register_spilling.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/register_spilling.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/register_spilling.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://devtalk.nvidia.com/default/topic/467841/flushing-instruction-cache-on-gpu/
https://devtalk.nvidia.com/default/topic/467841/flushing-instruction-cache-on-gpu/
https://devtalk.nvidia.com/default/topic/467841/flushing-instruction-cache-on-gpu/
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

	Introduction
	Background
	GPU Architecture Overview
	Memory Hierarchy
	GPU Code Execution

	Design Objectives
	PixelVault
	Non-Preemptive Execution
	On-chip Memory Operation Only
	Preventing Code Modification Attacks
	Key Storage
	Key Management

	Implementation
	AES
	RSA

	Evaluation
	Security Analysis
	Host Memory Attacks
	Extracting Intermediate States
	CPU Code Injection
	GPU Code Injection
	Simultaneous GPU Kernel Execution
	Register Spilling In Global Device Memory

	Performance Analysis

	Discussion and Limitations
	Related Work
	Conclusion
	References

