Reducing time cost in hashing operations

Frank Breitinger*, Kaloyan Petrov',
*da/sec — Biometrics and Internet Security Research Group

Hochschule Darmstadt, Darmstadt, Germany
Email: frank.breitinger@cased.de
tInstitute of Information and Communication Technologies
Bulgarian Academy of Sciences, Sofia, Bulgaria
Email: kpp@acad.bg

Abstract—During a forensic investigation, an investigator
might be required to analyze the content of a personal computer.
Due to huge amounts of data, it becomes necessary to recognize
suspect files and automatically filter out non-relevant files. To
achieve this goal, an investigator can resort to hashing algorithms
in order to classify files into known-to-be-good, known-to-be-bad
and unknown files. The working steps are quite simple: hash the
file, compare the resulting hashes against a database and put it
in one of the categories. Typically personal computers nowadays
store several hundred thousand files on their hard disk and thus
this operation becomes time consuming.

The paper at hand demonstrates a framework that speeds up
this proceeding as it uses multiple threads for different tasks.
Besides the typical multi-threading where the hashing algorithm
is performed by multiple threads , we use a dedicated thread for
reading files from the device, a prefetcher. Compared to single
threading we improved the run time efficiency by nearly 40%.

Keywords-Digital forensics; hashing; cryptographic hash func-
tions; performance; run time efficiency; file handling; prefetching.

I. INTRODUCTION

Over the recent years the distribution and usage of electronic
devices increased. Traditional books, photos, letters and LPs
became ebooks, digital photos, email and mp3. This transfor-
mation also influences the capacity of todays storage media
[22] that changed from a few megabytes to terabytes. Thus, the
amount of data gathered within a computer forensic acquisition
process is growing rapidly. The crucial task to solve this
data overcharge is to distinguish relevant from non-relevant
information which often resembles to look for a needle in a
haystack.

To cope with this huge amount of data, investigators often
use an automated preprocessing that groups files into three
categories: known-to-be-good, known-to-be-bad and unknown
files. For instance, system files of the operating system or
binaries of a common application like a browser are said
to be known-to-be-good and need not be inspected within
an investigation. The working steps are quite simple: hash
the file, compare the resulting fingerprint against a set of
fingerprints and put it in one of the categories. The most
common set/database of non-relevant files is the National
Software Reference Library (NSRL, [13]) maintained by the
US National Institute of Standards and Technology (NIST).

Due to the large amount of data the run time efficiency
is important - time is money. Thus, one property of hashing

algorithms is ‘ease of computation’ which is fulfilled by all
traditional hashing algorithms, like SHA-1.

Additionally the performance of modern hardware increases
rapidly as said by Moore’s Law [12]. Multiple cores and
powerful GPUs allow parallelizing the algorithms [1] and
tasks. However, “the biggest bottleneck often involves loading
data from files” [23]. One possibility to speed up the read-
ing/writing is to use RAID systems! that combines multiple
disk drive components into a logical unit. Thus instead of
reading/writing from a single disk, we may use two or more.
Another possibility are solid-state drives (SSD) which have
higher throughputs than conventional hard disks. For instance,
[4] says that SSDs can have a write/read speed up to S00MB/s
whereas HDDs only up to 120MB/s. However, as RAID and
SSD are not very widespread yet an intelligent file handling
is important.

The paper at hand therefore introduces a new framework for
file handling, that uses prefetching. Instead of having several
threads / cores hashing independently we use one thread for
reading and all remaining threads for hashing. The framework
could be easily used for all hashing algorithms or different
approaches.

The rest of the paper is organized as follows: In the Sec. II
we discuss the state of the art and discuss relevant literature.
Next, in Sec. III we explain different hash functions and their
usage in digital forensics. Sec. IV is the core of our work an
present the framework itself followed by some experimental
results in Sec. V. At the end there is the conclusion.

II. RELATED WORK

Hash functions are very popular in computer science and
deployed in many working fields. Probably the best-known
areas are cryptography and databases [21, Sec. 9.6]. However,
hash functions are also applied within computer forensics to
identify files [2, p.56++]. According to [11] hash functions
have two basic properties compression and ease of computa-
tion. Thus, as expressed by the latter one, run time efficiency
with respect to computational complexity is important.

Besides traditional hash functions like FNV [14] or crypto-
graphic hash functions like SHA-1 [20] or MD5 [15] there is

Thttp:/en.wikipedia.org/wiki/RAID; last accessed 14.10.2012

http://en.wikipedia.org/wiki/RAID

also similarity preserving hashing® as proposed by Kornblum
(ssdeep in 2006, [10]), Roussev (sdhash in 2010, [16]) or
Breitinger et al. (mrsh-v2 in 2012, [8]). Furthermore [§]
showed that SPH algorithms are normally slower than the
aforementioned traditional hash functions. In order to optimize
the run time efficiency most authors focus on the algorithms
themselves. For instance, improvements for ssdeep with
respect to computational efficiency were presented in [6], [9],
[18], [19].

III. FOUNDATIONS
A. Hash functions in digital forensics

Nowadays the most popular use case of cryptographic hash
functions within computer forensics is detecting known inputs.
In order to detect files based on their fingerprints, the computer
forensic investigator must have a database at hand, which
comprises at least a referrer to the input file and its hash value.
If he finds this hash value on a storage medium within an
investigation, he is convinced that the referred file is present
on the medium. In computer forensics hash values are typically
computed over the payload of a file, i.e., hash functions are
applied on the file level. Hence, known files can be identified
very efficiently.

As it is a challenging task to generate a capacious database,
often global databases are used. However, if a file is known-to-
be-good or known-to-be-bad depends on regional law. There-
fore hash databases have to be adapted according to the
national boundary conditions. The most famous database is
the National Software Reference Library (NSRL, [13]) with
its Reference Data Set (RDS)3.

While investigating a storage medium, the forensic software
hashes the input, performs look-ups to the RDS and filters out
each non-relevant file. Thus this reduces the amount of data
the investigator has to look at by hand. Typically the software
uses one thread to read and hash the file.

B. Similarity preserving hashing

In Sec. I we briefly introduced similarity preserving hash-
ing (SPH) and stated that these algorithms are often slower.
In order to test our framework we included three similar-
ity preserving hashing algorithms ssdeep, sdhash and
mrsh-v2 to demonstrate its effectiveness. In the following
we summarize the overall concept of the algorithms.

1) ssdeep: or also known as context triggered piecewise
hashing (abbreviated CTPH) divides an input into approxi-
mately 64 pieces and hash each piece separately. Instead of
dividing the input into blocks of a fixed length, it is divided
based on the current context of 7 bytes. The final hash value
is then a concatenation of all piecewise hashes where the
CTPH only uses the least significant 6 bits of each piecewise

2This term might be a little bit confusing and similarity digest is more
appropriate as hashing normally indicates a fixed size output. But as most of
the similarity preserving (SPH) algorithms do not output a fixed sized hash
value, we use similarity digest, fuzzy hash function and similarity preserving
hash function as synonyms.

3http://www.nstl.nist.gov; last accessed 13.01.2013

hash. This results in a Base64 sequence of approximately 64
characters. A detailed description is given in [10].

2) sdhash: identifies “statistically-improbable features”
using an entropy calculation. These characteristic features,
a sequence of length 64 bytes, are then hashed using the
cryptographic hash function SHA-1 and inserted into a Bloom
filter [5]. Hence, files are similar if they share identical
features.

3) mrsh-v2: is mainly based on ssdeep but includes
some improvements which makes it more robust and efficient.
For instance, the authors removed the restriction of 64 pieces
which is a security issue (see [3]). Furthermore instead of
using a Base64 fingerprint, mrsh—v2 creates a sequence of
Bloom filters as proposed in [16]. A detailed description is
given in [8].

C. Run time efficiency of hash functions

This section compares the run time efficiency of differ-
ent existing hashing algorithms which are all included in
our framework. All tests are based on a 500MiB file from
/dev/urandom and the times were measured using the
time command and the algorithm CPU-time (time denotes
this by user-time)

The results are shown in Table I. Row 1 shows that the
cryptographic hash functions like MD5 and SHA-1 outperform
every similarity preserving hashing algorithms. In row 2 we
used SHA-1 as benchmark.

D. OpenMP

“The OpenMP Application Program Interface (API) sup-
ports multi-platform shared-memory parallel programming in
C/C++ and Fortran on all architectures, including Unix plat-
forms and Windows NT platforms. Jointly defined by a group
of major computer hardware and software vendors, OpenMP is
a portable, scalable model that gives shared-memory parallel
programmers a simple and flexible interface for developing
parallel applications for platforms ranging from the desktop

to the supercomputer.”*.

IV. A PARALLELIZED FRAMEWORK FOR FILE HASHING

In the following we present a framework that optimizes
the file handling for hashing. It is written in C++ and uses
OpenMP 3.1 for multi-threading as explained in Sec. III-D.

The framework is divided into two branches - simple multi-
threading (SMT) and multi-threading with prefetching (MTP)
whereby our results focus on the latter approach. SMT was
added to show the benefits of prefetching compared to MTP
and thus this is only a side product.

We decided to name it parallel framework for hashing and
use the abbreviation pfh. The framework can be downloaded
on our web-page’.

Remark. Additionally the framework supports OpenMP
2.0, but with a decreased run time efficiency due to ‘capture

“http://openmp.org/wp/about-openmp/; last accessed 13.01.2013
Shttps://www.dasec.h-da.de/staff/breitinger-frank/#downloads; last accessed
13.01.2013

http://www.nsrl.nist.gov
http://openmp.org/wp/about-openmp/
https://www.dasec.h-da.de/staff/breitinger-frank/#downloads

SHA-1 MD5 | MRSH-v2 ssdeep 2.9 sdhash 2.0
runtime 2.33s | 1.35s 5.23s 6.48s 22.82s
algorithm
SHAT 1.00 0.58 2.24 2.78 9.78

TABLE I

RUN TIME EFFICIENCY COMPARISON OF SIMILARITY PRESERVING HASH FUNCTIONS AND SHA-1.

Flles

(BR)
\l%/ —A

v
Worker 1 Wnrker 2 Worker N-1

S
LWJ

Operations of the framework.

Prefetcher RAM table

Fig. 1.

clause’ which is only available since OpenMP 3.1. The capture
clause allows to copy a global variable into a local one
and increment the global variable, in an atomic operation.
In OpenMP 2.0 capture clauses can be replaced with critical
sections, but this reduces run time efficiency.

The rest of this section is structured as follows. Sec. IV-A
presents the general idea of the algorithm followed by the
command line in options and different modes in Sec. IV-B.
In Sec. IV-C we describe the exact proceeding and working
steps of our framework. Next are the implementation details in
Sec. IV-D which discusses the main classes of the framework
and give an example how to add new hashing algorithms. The
last section presents some future work.

A. Overview of multi-threading with prefetching

In contrast to traditional approaches where hash functions
request a file and process it, we implement a prefetching
mechanism. A sketch of the overall approach is shown in
Fig. 1.

The prefetcher handles the file reading and is responsible for
the communication between hard disk an RAM. The general
idea is that the critical resource - the hard disk - should ‘work’
all over the time. Thus, the prefetcher produces an ongoing file
request.

All files are placed within the RAM wherefore we use a
RAM table which limits the amount of storage. All remaining
threads are workers and proceed the files from the RAM using
the defined hashing algorithms. After hashing the file, there are
several opportunities which is denoted by ‘end result’.

Depending on the computational efficiency of the hashing
algorithm there are two possibilities:

1) If the hashing algorithm is fast, the worker threads are
faster than the prefetching process and thus the workers
have to idle. However, the hard disk is at its limit and
cannot process faster.

2) If the hashing algorithm is slow®, the RAM table be-
comes full and cannot store any further files. Thus the
prefetcher starts to idle. In this case the prefetcher thread
could turn into a normal worker and help to proceed the
files in RAM table’.

One may say that distributed systems may further increase
the performance. As will be demonstrated the limiting resource
is the underlying device and not the computational power
of the system. Thus there won’t be any improvement using
distributed systems for hashing inputs.

B. Command line parameters and operation modes

Before describing the details of our framework we briefly
introduce the command line options that allow a rough config-
uration. Let [NV be the number of processor cores in the system
and let the value of option —p be denoted by P where P < N.

e c - mode of framework operation [optional] (explained
in the following paragraph).

o d - directory to be hashed or file with digests [is required].

e r - recursive mode for directory traversing [optional].

e p - number of prefetching threads [default is 1].

e t - number of all threads [default is /V].

e h - hashing algorithm [default is MRSH-v2].

e m - size of used memory in megabytes [default is 20MB].

We have already motivated the default values for —p and
—t. The motivation for a default memory size of 20MB is
based on the average file size. [6] stated that the average file
size of an operation system is approximately 255KB. This also
somehow coincides with the t5-corpus where the average file
size is at 418KB. Due to the largest file of ~ 19MB we set
the default to 20MB.

Currently there is one drawback: all files larger than the
RAM table will be skipped. This issue will be fixed in an
upcoming version.

In general the framework can operate in four different
modes named in the following:

e HASH - All files are hashed using the specified algorithm
and the results are printed on the standard output [de-
fault].

e FULL - The framework does an all-against-all comparison
of all files in directory.

e <DIGEST> - All files within directory are hashed
and compared against DIGEST which is a single finger-
print.

0f course all hashing algorithms are supposed to be fast. However, some
similarity preserving hashing algorithms like sdhash are multiple times
slower than SHA-1 and thus we use the term slow.

TThis functionality is future work. Currently the prefetcher never changes
its role.

If value of parameter —d is a fingerprint file, the frame-
work will compare DIGEST against all fingerprints with
the file - skipping the hashing stage.

e <FILENAME> - <FILENAME> needs to be replaced by
a path to a file containing a list of valid hash values. The
framework hashes all files in directory and compares
them against the list. If the signature is found within
the list, it is a valid result®. This functionality is part of
the framework, the implementation of the hash algorithm
need not have an option for doing it.

Sample execution of the framework. The following com-
mand will execute the framework in the default mode, with a
RAM table of size 256MB. The t5 directory will be traversed
recursively and all hashes are sent to the standard output. Since
we did not specify the -t and —p options, the program has
P =1 prefetching thread and N — P hashing threads. Recall,
N is the number of available processor cores in the system.

$ pfh -c hash -m 256 -d t5 -r

C. Proceeding

On starting there is an initializing part where the framework
creates its 4 building blocks - options, hashing interface, ram
table and mode of operation. Then the input parameters are
parsed from the options class. In the following, the hashing
interface is pointed to the chosen hashing algorithm and
variables are set. RAM table is created at last, since it needs
information from the hashing algorithm, to initialize its file
filters.

The directory holding files is traversed and each file that
passed the filter is added to files-to-be-hashed-list. Currently
the filter system concerns about the file size and access
rights. For instance, files larger than the RAM table cannot be
handled. Furthermore some algorithms may need a minimum
file size.

Next, we transfer the list structure to an array for easier
thread processing. Knowing the amount of files that will be
hashed, we initialize some of its internals to optimize its
performance. Last part of the framework initialization sets the
mode interface. Here we point comparison/result functions to
the specified mode and set internal variables, if any.

The actual framework processing can be broken into three
stages 1) reading/hashing files, 2) comparing hash values and
3) presenting results/scores whereby only the first and second
stage are executed with multiple threads while the third stage
is sequential. Threads are created before the first stage and
finalized at end of second stage. This way no time is lost, for
thread management (fork/join), during framework operation.

1) Reading/hashing files.

e SMT branch. Each of the IV threads put its file into
the RAM table and hashes it. All threads continue
until there are no more files in the queue.

8This is equal to the —m option of ssdeep.

RAM Table|| Mode Hashing
Umefface) (interface)
RAM File . % Ssdeep |md5 Hsha*l
@/ g| 2|| sdhash [ripemd160
<l e g mrsh OpenSSL

Fig. 2. Objects of the framework

After being assigned to a role (reading or hashing),
threads enter a ‘work loop’ for execution. Based on
the return value, threads can change their role, e.g.,
if the RAM table is empty.

« MTP branch. First, there is a thread assignment
where every thread receives its role, i.e., we set P
prefetchers. All N — P threads are hashing threads.
Currently within MTP all threads preserve their role
over the whole runtime.

2) Comparing hash values. This stage is also executed in
parallel using the OpenMP ‘parallel for’ clause, in which
threads work on chunks of the global compare iterations.
Scores from comparison are held in an array, because if
threads print to screen, they have to synchronize and the
speedup of parallelism is lost.

3) Presenting results/scores. At the end the file-path, hash
value and score, if compare mode is used, are given to
the standard output.

D. Implementation details

Besides the two branches SMT/MTP and the operation
modes, the framework mainly consists of two objects named
RAM table and hashing interface as shown in Fig. 2 which
will be explained in the following.

1) SMT and MTP: In the following we describe how to
switch between the two branches of the framework - simple
multi-threading (SMT) and multi-threading with prefetching
(MTP). Although we could not find any case where SMT
outperforms MTP, we describe how to use it for the sake of
completeness.

In order to change the branch, there is a configuration file
called configure.ac. This is a template which is used by
the configuration script when automake is executed. There are
three options:

-without-prefetching disables prefetching of
files and thus sets the branch to SMT (default: no and
thus MTP mode).

-with-timing enables timing (default: no). Supported
times are total, compare, hashing, accumulated time for
waiting for ram and file, reading from disk. It also
provides throughput for hashing (MB/s) and comparing
(items/s).

-with-stats enables statistics (default: no). Currently
only two state variables are added, waiting for a file and
waiting for space in ram table.

2) RAM Table: RAM_table is the class responsible for
holding files and synchronizing threads. Files are presented
with the ram_file class, which provides functionality for
reading files from the hard disk and processing them using the
hash algorithm interface. ram_table uses two semaphores’
for realizing the producer/consumer model. One semaphore is
used for waiting for free space in RAM table and the other
for waiting for available/prefetched files in RAM table. POSIX
and Windows semaphores are supported through macros ex-
panded during compilation.

The processing of the files in the table is based on two
indicies called fi and pi. fi is the amount of files within the
table and set by the prefetcher, i.e., after every insertion into
the table fi increases by one. pi is the index of the worker
threads. Thus every time a worker thread fetches a new file
from the table pi increases. As a consequence, if pi > fi,
threads have to wait for data.

To avoid race hazards we use the OpenMP 3.1 capture
clause. Thus a thread can take the current index and increase
the global index, in a single atomic operation. This way threads
work with RAM files without the need for locking or critical
sections.

3) Interfaces: The framework accesses all hashing algo-
rithms and modes through self-made interfaces and thus every
developer can add own hashing algorithm with a few lines
of code. Realizations of interfaces are written in their own
* . hpp file and included in the interface implementation file.

The hashing interface hash_alg.cpp also provides two
extensions one for hashing algorithms with character output
and the other for byte output. The difference between these
two are functions for printing and saving a digest buffer.

Member variables of the class are:

Type of output - could either be hex or string. For instance
MDS5 results in a buffer holding a byte array, which needs
to be converted to string.

Length of hash digest - is used to print the hash value.
Minimum file size - is necessary as some hashing algo-
rithms have a minimum file size requirement. For instance
ssdeep needs 4096 bytes.

Listing 1 and Listing 2 show the necessary changes for
adding the ssdeep algorithm.

1) All hashing algorithms are implemented in their own file

with the name hash_alg_NAME.hpp.

1 | class hash_alg_ssdeep: public
hash_alg_char_output({

2 |public:
3 int hash (uchar *in, uint inlen, uchar =*xout) {
4 xout = get_out();
5 return (NULL == fuzzy_hash_buf_r ((const
uchar*)in, inlen, =xout))
? -1: FUZZY_MAX_RESULT;

bi

© ® 9 o

int cmp (uchar xa, uchar xb, uint len) {
10 return fuzzy_compare_r (a,b);

%http://en.wikipedia.org/wiki/Semaphore_(programming); last accessed

13.01.2013

11 }i
12
13 hash_alg_ssdeep(): hash_alg_char_output () {
14 type = HA_SSDEEP;
15 max_result_size =
16 hash_digest_size = FUZZY_MAX_RESULT;
17 min_file_size = SSDEEP_MIN_FILE_SIZE;
18 }i
19 | };
Listing 1. Framework extension for ssdeep.

2) Add new case in interface initialization function for
ssdeep.

1 |[if(0 == htype.compare (0, 6,
2 h = new hash_alg_ssdeep();
3|}

"ssdeep")) {

Listing 2. Initializing hashing interface for ssdeep.

Currently the framework includes several cryptographic
hash functions and three similarity preserving hashing al-
gorithms. We included MDS, SHAI1, SHA2, SHA3 and
RIPEMDI160 from the OpenSSL library and added ssdeep,
sdhash and mrsh-v2 with source code.

The mode.h interface allows the framework to operate
in different ways, after it’s compiled. The interface itself
consist of 3 virtual functions, that represent the 3 steps of the
framework - hashing of files, comparing digests and printing
results/digests.

4) Coding optimizations: The following optimizations re-
duce the number of buffer allocations during the execution and
brings two advantages:

1) Pre-allocation of all digest buffers reduces execution
time, as there are less calls of new[].

2) The Framework memory footprint is also reduced, be-
cause all digest buffers are grouped into one linear
buffer. For instance, the GNU C library uses a header
(2 words - 8b/32bits and 16b/64bit systems) for each
memory block. If we allocate a digest for MD5 (16b),
we will have another 16b (on 64bit systems) of OS
administrative data (header).'?

Both optimizations are only available for hashing algorithms
with static hash value length. In the case of mrsh-v2 and
sdhash which have a variable hash value length we can not
allocate the linear digest buffer before hashing is done.

E. Future work

An improvement to the implementation will be the addition
of a balancing function. Under balancing we mean changing
the order of files, in which they are processed, to reduce
waiting for free table space and fragmentation (empty space
in table). A simple example is shown below.

A(8), B(4), C(3), D(2), E(4), F(5) #Files order
TBL(0/10) #Table of size 10 with 0 space used
T1:PREF (A) —> TBL(8/10)

10Example take from http://Iwn.net/Articles/257209/ at the end of Sec. 7.3;
last accessed 13.01.2013

http://en.wikipedia.org/wiki/Semaphore_(programming)
http://lwn.net/Articles/257209/

T1:PREF (B) —-> TBL(8/10) —-> WAIT(4) #Wait because
only space of 2 is available

T2:HASH(A) -> TBL(0/10)

A(8), D(2), B(4), F(5), C(3), E(4) #Files order

after balancing

Listing 3. RAM table balancing example.

V. EXPERIMENTAL RESULTS & ASSESSMENT

To assess our framework every test uses the t5-corpus'!
[17, sec. 4.1] containing 4457 files of the file types given in
Table II. The unzipped size of these files is 1.78GB which
corresponds to an average file size of 418,91KB. All following
tests are based on ssdeep-2.9 and sdhash-2.3.

jpg | gif | doc xls | ppt | html pdf txt
Amount | 362 | 67 | 533 | 250 | 368 | 1093 | 1073 | 711
TABLE II

STATISTIC OF THE T5-CORPUS.

All binaries were compiled using the same compiler and
configuration options. To compiler flags we added —-g0 to
disable debugging, —02 to enable second level of optimiza-
tion and -march=native to allow usage of CPU specific
instructions.

The test environment was a server having the following
benchmark data:

CPU: 2xIntel(R) Xeon(R) E5430 2.66GHz x 4 cores

HDD: Seagate® ES™ Series 250GB(SATA2) 8MB Cache 7200RPM
RAM: 8x2GB DDR2 FB-DIMM 667 MHz

KERNEL: Linux 2.6.32-279.11.1.el16.x86_64

GCC: gcc—4.4.6-4.e16.x86_64

In general there are three different times'?:

o Real is wall clock time - time from start to finish of the
call. This is all elapsed time including time slices used
by other processes and time the process spends blocked
(for example if it is waiting for I/O to complete).

o User is the amount of CPU time spent in user-mode code
(outside the kernel) within the process. This is only actual
CPU time used in executing the process. Other processes
and time the process spends blocked do not count towards
this figure.

« Sys is the amount of CPU time spent in the kernel within
the process. This means executing CPU time spent in
system calls within the kernel, as opposed to library code,
which is still running in user-space. Like ’user’, this is
only CPU time used by the process. See below for a brief
description of kernel mode (also known as ’supervisor’
mode) and the system call mechanism.

Since our framework improves the whole processing we are
interested in the user and sys time. Due to the fact that we
used a dedicated system we simply take the real time (we

http://roussev.net/t5/t5-corpus.zip; last accessed 27.01.2013

2http://stackoverflow.com/questions/556405/
what-do-real-user-and-sys-mean-in-the-output-of-timel; last
19.12.2012

accessed

proofed that user + sys = real). The time was measured
using the Linux time command.

A. Overall runtime efficiency

This section demonstrates the general improvement of using
the framework wherefore we compared the original implemen-
tation against MTP. Both tests set -t 2 which indicates one
prefetching thread and one working thread.

Test one (T1) analyzes ssdeep in detail. The results are
listed in Table III. Using SMT improves the basic algorithms
by approximately 17.5% which is in contrast to our expecta-
tions that it halves the time. The MTP proceeding shows an
improvement of nearly 40%. The lower speedup of SMT is
due to the lack of data in RAM. Having two threads means
there will be two times more request for file data, but still
having the same disk throughput. This way threads are being
underfed and they have to idle. In the case of MTP we have
a linear system - one reader and one hasher - which reduces
the idle times of each thread.

Time | Difference | Terminal command
original | 83.67s 100.00% | $ ssdeep -r t5
SMT 69.05s 82.52% | $ pth -d t5 -t 2 -h ssdeep
MTP 52.19s 62.37% | $ pth -d t5 -t 2 -h ssdeep
TABLE I

T1: RUN TIME EFFICIENCY WITH SSDEEP USING STANDARD OUTPUT.

Test two shows the improvement for different algorithms.
All output was sent to /dev/null to eliminate any execution
time deviation caused by printing. Table IV shows the results.

The main result of T2 is that prefetching is very useful
for SPH algorithms which are more computationally intensive
than cryptographic hash functions. Using MTP we achieved
similar run times for all algorithms expect sdhash. This
shows that the limiting fact in this case is the underlying
hardware.

MD5 SHA-1 | mrsh-v2 ssdeep sdhash
original | 51.65s 52.35s 75.61s 83.67s 145.38s
MTP 51.74s 51.64s 51.79s 52.19s 89.09s

TABLE IV

T2: RUN TIME EFFICIENCY OF DIFFERENT HASHING ALGORITHMS.

Table V presents the results for T3 which runs in FULL
mode. Thus besides the hash value generation there is also an
all-against-all comparison.

In case of ssdeep which is described in rows 1 and 2 we
obtained an improvement of nearly 45%. For sdhash (rows
3 and 4) the results are even better where we stopped the
all-against-all comparison after 69min and MTP mode only
needed 186s.

3We removed the —h option from both pfh commands for a better
readability.

http://roussev.net/t5/t5-corpus.zip
http://stackoverflow.com/questions/556405/what-do-real-user-and-sys-mean-in-the-output-of-time1
http://stackoverflow.com/questions/556405/what-do-real-user-and-sys-mean-in-the-output-of-time1

Time | Difference | Terminal command’™
ssdeep | 119.21s 100.00% | $ ssdeep -d -r t5
MTP 68.34s 57.33% | $ pfh -c full -d t5 -t 8 -m 128
sdhash >69m - | $ sdhash -r-g -p 8 t5
MTP 186,56s - | $ pfh -c full -d t5 -t 8 -m 128
TABLE V

T3: RUN TIME EFFICIENCY WITH OF FULL MODE [DEFAULT T=2].

B. Impact of multiple cores

In the following we discuss the influence of multiple cores.
Thus we invoke the framework by

$ pfh -h ALG -c hash -d t5 -m 256 -t XX > /dev/null

where XX is the amount of cores/threads and ALG the used
algorithm.

Our test includes two runs denoted by R1 and R2 which are
shown in Table VI and Table VII, respectively. The peculiarity
is that we perform both runs in immediate succession and thus
the files where still cached in R2.

R1 demonstrates that multiple cores is especially important
for slower algorithms like sdhash. For fast algorithms, e.g.,
mrsh-v2, it doesn’t scale well as the underlying hardware
is to slow. R2 simulates fast hardware as all files are cached.
Due to the fact that all files are cached the prefetcher thread
is dispensable and thus SMT is faster.

t=2 t=4 t=8
mrsh SMT | 64.03s | 66.39s | 67.14s
MTP | 51.79s | 51.81s | 52.02s
sdhash SMT | 89.33s | 72.03s | 68.14s
MTP | 89.09s | 51.90s | 52.08s
TABLE VI

R1: RUN TIME EFFICIENCY HAVING DIFFERENT AMOUNT OF THREADS.

t=2 t=4 t=8
mrsh SMT | 10.15s | 5.30s 2.92s
MTP | 17.68s | 6.23s 2.90s
sdhash SMT | 48.42s | 24.98s | 11.83s
MTP | 88.15s | 31.12s | 15.07s
TABLE VII
R2: RUN TIME EFFICIENCY HAVING AMOUNT OF THREADS AND CACHED
DATA.

As a conclusion we can say that in the first case the
underlying hardware is to slow. To be more precise, the hard
disk is to slow, the prefetcher thread cannot fill the RAM
table and thus the worker threads have to idle. Having a SSD
device or RAID system it should scale better because of higher
throughputs.

C. Impact of different memory sizes

This section shows the impact of different RAM table sizes
wherefore we invoke the framework by

$ pfh -h mrsh -c hash -d t5 -m XX -t 4 > /dev/null

where XX is the amount of memory in megabytes for the RAM
table.

m=128 | m=256 | m=512

SMT | 66.36s | 66.39s | 66.20s

MTP | 51.62s | 51.81s | 51.72s
TABLE VIII

RUN TIME EFFICIENCY HAVING DIFFERENT MEMORY SIZES.

Table VIII shows that the size of the RAM table does
not influence the run time efficiency which rely to the two
facts given at the end of Sec. IV-A. In general there are
two possibilities. On the one hand there is a ‘slow’ hashing
algorithm and the prefetching thread is faster. Thus the RAM
table is always full because as soon as the worker thread
fetches a file, the prefetcher adds the next one. The limiting
source is the algorithm run time efficiency.

On the other hand there is a fast hashing algorithm and
the worker threads are faster. Thus the RAM table is always
‘empty’ because as soon as a new fill is added, one worker
processes it. The limiting source is the underlying hardware.

D. Impact of multiple prefetchers

Although the number of prefetcher threads is adjustable,
tests showed that the default setting of 1 is the best choice.
Table IX verifies that having two prefetchers worsen the
runtime by 15% due to more overhead.

Time | Difference | Terminal command
52.05s 100.00% | $ pth -t 8 -c hash -d t5 -h md5
60.09s 115.44% | $ pth -t 8 -c hash -d t5 -h md5 -p 2

TABLE IX
IMPACT OF TWO PREFETCHING THREADS

E. Impact to a forensic investigation

In the following we analyze the improvement with respect
to real world scenarios. Therefore we took two own working
stations as given in Table X and used the results from this
section to do a projection.

Files Size | Avg. size

Mac OSX 322,531 | 100.92GB | 328.08KB

Windows 7 | 139,303 36.55GB | 275.13KB
TABLE X

SUMMARY OF TWO OWN WORKSTATIONS.

Based on the findings from Sec. V-A we can estimate the
runtime. The results from Table XI.

Size stand-alone SMT MTP
Mac OSX 100.92GB | 99min S1sec | 73min 43sec | 56min 43
Windows 7 36.55GB | 36min 10sec | 26min 42sec | 20min 32

TABLE XI
INVESTIGATION TIME USING SSDEEP ON TWO OWN WORKSTATIONS.

F. Distinction to existing parallelization tools

There are a couple of tools that execute commands, scripts
or programs in parallel. Thus this section is a comparison of
our framework against parallel'* and Parallel Processing Shell
Script'> (abbreviated ppss), as the handling is easy. Both tools
work on local cores (not distributed) with multi-threading and
distribute the workload automatically to different threads.

The main conclusion from the results in Table XII is that
MTP outperforms existing tools/scripts. Both analyzed tools
do a simple multi-threading and thus we expect approximately
results than with SMT which is true for parallel. In case of
ppss the performance really worse with is due to a lot of I/O
operations - ppss saves its state to hard drive in text files.

Time | Difference | Terminal command
original 83.67s 100.00% | $ ssdeep -r t5 > /dev/null
ppss 337.11s 402.90% | $ ppss -p 8 -d t5 -c ’ssdeep ’
parallel 69.81s 83.43% | $ parallel ssdeep — data/t5/*
SMT 67.55s 80.73% | $ pth -t 8 -c hash -d t5 -h ssdeep
MTP 52.04s 62.20% | $ pth -t 8 -c hash -d t5 -h ssdeep
TABLE XII
COMPARISON OF WITH DIFFERENT PARALLELIZATION TOOLS USING
SSDEEP.

We verified our assumption that the slowness of ppss is
due to the I/O bound by hashing 16 large files each having
1.2GB. In this case there are only a few writing operations.
The results are given in Table XIII. As we can the the
performance increased. However, it is still slower than the
original implementation which is due to hard disk reading
operations. Each threads reads the file whereas using ssdeep
as stand-alone reads sequentially.

Time | Difference | Terminal command
ssdeep | 264s 100% | $ ssdeep -r t5.bz
ppss 342s 129% | $ ppss -p 8 -d t5.gz -c ’ssdeep ’

TABLE XIII
COMPARISSON OF PFH, PPSS AND STAND-ALONE TOOLS WITH 16XT5.GZ

VI. CONCLUSION

Currently hashing a whole file system could be very time
consuming doing it single threaded. With this paper we took
the challenge of improving current practice for hash value
generation and comparison with forensic purposes and provide
a reusable framework. The results show an improvement of
over 40% for an all-against-all comparison compared to the
standard ssdeep algorithm. The design of the framework
allows to add any other generic algorithm. Additionally we
showed that in a real world scenario the investigation time
could be improved a lot, e.g., from 1h 39 min to 56min without
acquiring any extra hardware.

At the moment the framework already contains several
cryptographic and non-cryptographic hash functions. Besides

http://www.gnu.org/software/parallel/; last accessed 14.01.2013
Bhttp://code.google.com/p/ppss/; last accessed on 13.01.2013

traditional hash functions we also included ssdeep, sdhash
and mrsh-v2. Within an upcoming version we like to im-
prove the drawback that only files smaller than the RAM table
can be hashed.

VII. ACKNOWLEDGMENTS

The research leading to these results has received par-
tial funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
257007.

We thank Nuno Brito from the Serco Services and European
Space Agency (Darmstadt, Germany) for valuable discussions
and good ideas.

REFERENCES

[11 D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzen-
macher, J. D. Owens, and N. Amenta, “Real-time parallel hashing on
the gpu,” in ACM Transactions on Graphics, 2009.

[2] C. Altheide and H. Carvey, Digital Forensics with Open Source Tools:
Using Open Source Platform Tools for Performing Computer Forensics
on Target Systems: Windows, Mac, Linux, Unix, etc. Syngress Media,
May 2011.

[3] H. Baier and F. Breitinger, “Security Aspects of Piecewise Hashing in
Computer Forensics,” IT Security Incident Management & IT Forensics
(IMF), pp. 21-36, May 2011.

[4] A. Baxter, “Ssd vs hdd,” http://www.storagereview.com/ssd_vs_hdd,
2012.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, pp. 422-426, 1970.

[6] F.Breitinger and H. Baier, “Performance Issues about Context-Triggered
Piecewise Hashing,” in 3rd ICST Conference on Digital Forensics &
Cyber Crime (ICDF2C), vol. 3, October 2011.

, “A Fuzzy Hashing Approach based on Random Sequences and

Hamming Distance,” ADFSL Conference on Digital Forensics, Security

and Law, May 2012.

, “Similarity Preserving Hashing: Eligible Properties and a new
Algorithm MRSH-v2,” 4th ICST Conference on Digital Forensics &
Cyber Crime (ICDF2C), October 2012.

[9] L. Chen and G. Wang, “An Efficient Piecewise Hashing Method for

Computer Forensics,” Workshop on Knowledge Discovery and Data

Mining, pp. 635-638, 2008.

J. Kornblum, “Identifying almost identical files using context triggered

piecewise hashing,” Digital Forensic Research Workshop (DFRWS),

vol. 3S, pp. 91-97, 2006.

A. Menezes, P. Oorschot, and S. Vanstone, Handbook of Applied

Cryptography. CRC Press, 1997.

G. E. Moore, “Cramming more components onto integrated circuits,”

Electronics Magazine, p. 4, 1965.

NIST, “National Software Reference Library,” May 2012. [Online].

Available: http://www.nsrl.nist.gov

L. C. Noll. (2001) Fowler / Noll / Vo (FNV) Hash. Last accessed

on 2012-07-05. [Online]. Available: http://www.isthe.com/chongo/tech/

comp/fnv/index.html

R. Rivest, “The MD5 Message-Digest Algorithm,” 1992.

V. Roussev, “Data fingerprinting with similarity digests,” Internation

Federation for Information Processing, vol. 337/2010, pp. 207-226,

2010.

, “An evaluation of forensic similarity hashes,” Digital Forensic

Research Workshop, vol. 8, pp. 34—41, 2011.

V. Roussev, G. G. Richard, and L. Marziale, “Multi-resolution similarity

hashing,” Digital Forensic Research Workshop (DFRWS), pp. 105-113,

2007.

K. Seo, K. Lim, J. Choi, K. Chang, and S. Lee, “Detecting Similar

Files Based on Hash and Statistical Analysis for Digital Forensic

Investigation,” Computer Science and its Applications (CSA ’09), pp.

1-6, December 2009.

SHS, “Secure Hash Standard,” 1995.

S. Sumathi and S. Esakkirajan, Fundamentals of Relational Database

Management Systems. Springer Berlin Heidelberg, February 2007,

vol. 1.

[7]

[8]

[10]

(1]
[12]
[13]
[14]

[15]
[16]

(17]

[18]

[19]

[20]
[21]

http://www.gnu.org/software/parallel/
http://code.google.com/p/ppss/
http://www.storagereview.com/ssd_vs_hdd
http://www.nsrl.nist.gov
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html

[22] C. Walter, “Kryder’s law.” [Online]. Available: http://www.
scientificamerican.com/article.cfm?id=kryders-law&ref=sciam

[23] S. Worthmiiller, “Multithreaded file i/0,” http://www.drdobbs.com/
parallel/multithreaded-file-io/220300055, 28. September 2009.

http://www.scientificamerican.com/article.cfm?id=kryders-law&ref=sciam
http://www.scientificamerican.com/article.cfm?id=kryders-law&ref=sciam
http://www.drdobbs.com/parallel/multithreaded-file-io/220300055
http://www.drdobbs.com/parallel/multithreaded-file-io/220300055

	Introduction
	Related Work
	Foundations
	Hash functions in digital forensics
	Similarity preserving hashing
	ssdeep
	sdhash
	mrsh-v2

	Run time efficiency of hash functions
	OpenMP

	A parallelized framework for file hashing
	Overview of multi-threading with prefetching
	Command line parameters and operation modes
	Proceeding
	Implementation details
	SMT and MTP
	RAM Table
	Interfaces
	Coding optimizations

	Future work

	 Experimental results & assessment
	Overall runtime efficiency
	 Impact of multiple cores
	Impact of different memory sizes
	Impact of multiple prefetchers
	Impact to a forensic investigation
	Distinction to existing parallelization tools

	Conclusion
	Acknowledgments
	References

