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ABSTRACT
The security of virtual machine monitors (VMMs) is a challeng-
ing and active field of research. In particular, due to the increas-
ing significance of hardware virtualization in cloud solutions, it is
important to clearly understand existing and arising VMM-related
threats. Unfortunately, there is still a lot of confusion around this
topic as many attacks presented in the past have never been imple-
mented in practice or tested in a realistic scenario.

In this paper, we shed light on VM related threats and defences
by implementing, testing, and categorizing a wide range of known
and unknown attacks based on directly assigned devices. We ex-
ecuted these attacks on an exhaustive set of VMM configurations
to determine their potential impact. Our experiments suggest that
most of the previously known attacks are ineffective in current
VMM setups.

We also developed an automatic tool, called PTFuzz, to discover
hardware-level problems that affects current VMMs. By using PT-
Fuzz, we found several cases of unexpected hardware behaviour,
and a major vulnerability on Intel platforms that potentially im-
pacts a large set of machines used in the wild. These vulnerabili-
ties affect unprivileged virtual machines that use a directly assigned
device (e.g., network card) and have all the existing hardware pro-
tection mechanisms enabled. Such vulnerabilities either allow an
attacker to generate a host-side interrupt or hardware faults, violat-
ing expected isolation properties. These can cause host software
(e.g., VMM) halt as well as they might open the door for practical
VMM exploitations.

We believe that our study can help cloud providers and researchers
to better understand the limitations of their current architectures to
provide secure hardware virtualization and prepare for future at-
tacks.
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1. INTRODUCTION
Due to the increasing demand towards server consolidation, vir-

tualization has become a key element of IT infrastructures. For
example, the ability to create and manage virtual servers is one
of the pillars of Infrastructure-as-a-Service (IaaS) cloud services,
such as Amazon EC2 [1] and Google Compute Engine [2]. For this
reason, both software and hardware vendors are constantly devel-
oping and releasing new technologies to satisfy the ever-growing
customer expectations in terms of security, privacy, performance,
and usability.

In the last ten years, a large number of papers [3, 4, 5, 6, 7, 8]
have been presented to either secure, or enhance the performance
and capabilities of VMMs. Several works [9, 10, 11, 12, 13, 14]
also mention and implement possible attacks. Unfortunately, most
of them are described only from a theoretical point of view, and
only a few have been actually implemented and thoroughly tested
in realistic settings. Moreover, even when a proof-of-concept im-
plementation exists, it is often difficult to understand what the pre-
requisites are for the attack to work, what the real impact is, and to
which extent the results can be generalized to other environments
and/or VMMs. Most of these questions are difficult to answer, and
it is not uncommon also for experts to disagree on these points.
Finally, to make things even more complex, current VMMs are
rapidly evolving. Each new release contains new technologies that
can potentially introduce new vulnerabilites as well as new coun-
termeasures that can make existing attacks obsolete.

For example, several techniques have recently been introduced
to increase the efficiency and security of I/O operation for guest
virtual machines (VMs). Direct device assignment (also known as
device passthrough) is such a mechanism, where the VMM assigns
a device exclusively to one VM instead of sharing it with other
virtual machines. This is achieved by directly mapping the device
into a VM address space, redirecting the corresponding interrupts
to the correct VM. Clearly, assigning the hardware to be directly



controlled by a VM improves the performance. At the same time,
this approach also introduces a wide range of security problems
that eventually led hardware manufacturers to introduce hardware
assisted protection extensions for the CPU and chipset.

In this paper, we demonstrate a wide range of known and un-
known attacks that can be launched via device passthrough. First,
we chose to re-implement attacks that have been proposed by se-
curity researchers in order to systematically study their impact and
their limitations against recent versions of Xen and KVM virtual
machine monitors. We believe that repeating experiments is fun-
damental in computer science, as well as in many other scientific
fields (e.g., physics) to validate the results of different researchers.
For this reason, we carefully replicated our tests under seven dif-
ferent VMM configurations.

Second, we complemented the existing attacks by exploring new
directions and unknown corner cases. In particular, we propose
two novel attacks, one based on the modification of the Peripheral
Component Interconnect express (PCIe) configuration space and
the other based on the creation of host-side Non-Maskable Inter-
rupts (NMIs). More precisely, our interrupt attack is the conse-
quence of a misunderstanding between the hardware and software.
In addition, it is the only interrupt attack to date that works on con-
figurations in which all available hardware protections are turned
on. By discussing our results with vendors, we realized that our at-
tack is pervasive and especially affects Intel based server platforms.

To perform our experiments, we implemented several tools de-
signed to reveal configuration weaknesses, VMM vulnerabilities,
or deeper hardware problems. Some attacks were manually tested,
for example by remapping specific I/O memory ranges and trying
to read or write them. In other cases, however, it was impossible to
manually cover the space of all possible values, so we implemented
a fuzzer, called PTFuzz, to thoroughly explore different problems.

In summary, this paper makes the following contributions:

• We re-implement a wide range of previously proposed at-
tacks to evaluate the threat that they carry on contemporary
VMMs.

• We introduce two novel attacks for passthrough devices: A
new variation of an attack against the PCIe configuration
space and an interrupt attack that violates the security set-
tings in all tested configurations. While the former was dis-
covered manually, the latter was revealed by a fuzzer, called
PTFuzz, that we built to automatically reveal low-level prob-
lems during DMA operations. In addition, PTfuzz revealed
another unexpected hardware behaviour during testing inter-
rupt attacks.

• We test all the attacks on various configurations of two com-
modity VMMs (Xen and KVM), and discuss how different
features contribute to the security of these VMMs. On the
one hand, our experiments show that it can be quite difficult
to properly configure a VMM to operate securely. In addi-
tion, we show that in some circumstances the overall security
can only be guaranteed by disabling device passthrough for
untrusted guests. On the other hand, once the system is prop-
erly configured, most of the attacks (except our new interrupt
attacks) are either ineffective or restricted to the attacker’s
virtual machine.

2. BACKGROUND
A virtualized environment consists of three main software com-

ponents: the host operating system (or privileged VM), a number
of guest operating systems running inside isolated virtual machines

(VMs), and a Virtual Machine Monitor (VMM) responsible for
controlling the access to hardware resources1. In reality, the dis-
tinction between these three components is not always clear. For
example, in Type I VMMs (such as Xen), there is no host OS but
only the VMM and a privileged VM (e.g., Xen’s Dom0) that man-
ages other unprivileged guest virtual machines. Type II VMMs
(such as KVM), however, include a host OS which also contains
the hypervisor in charge of uniformly managing all the system re-
sources.

Prior to the introduction of specific hardware support, the execu-
tion of unmodified guest OSs (i.e., full virtualization) was imple-
mented by performing instruction emulation, for example, by using
binary translation. Performance was further improved by the in-
troduction of paravirtualization, however, this requires a modified
version of the guest OS.

As these pure software solutions have various weaknesses in
terms of scalability, performance and security, a new approach called
hardware assisted virtualization was introduced by AMD/V [15]
and Intel-VT [16] technologies.

In the rest of this section, we will introduce the main technolo-
gies (both hardware and software) that are required to understand
the security of VMMs and the experiments we present in this paper.

2.1 Direct Device Assignment
One of the main tasks of the VMM is to control how guest virtual

machines can access physical I/O devices. Three main approaches
exist to perform this task: emulation, paravirtualization and direct
device assignment (also known as direct access or passthrough).
The first two techniques share virtualized I/O devices among mul-
tiple virtual machines. On the contrary, the passthrough approach
assigns one physical device exclusively to one VM that has full
control and direct access to most parts of the assigned hardware.
This has the advantage of significantly reducing the main bottle-
neck of virtual environments: the overhead of I/O operations [17,
18, 19, 20, 21]. Unfortunately, direct device assignment also raises
several security concerns. In fact, bus mastering capable directly
assigned devices can initiate DMA transfers, and have access to ar-
bitrary memory locations [10]. A malicious virtual machine may
misuse them to access the memory of other VMs. Moreover, buggy
device drivers can also be the root cause of system instability [22,
23, 24, 25]. These problems can be mitigated by using an IOMMU,
as explained later in this section.

2.2 PCI/PCIe Address Space Access
On the x86 architecture, a PCI device can be accessed in two

different ways: using a Port Mapped I/O (PIO) or using a Memory
Mapped I/O (MMIO) mechanism. Each PCI device configuration
is stored in the device configuration memory. This memory is ac-
cessible either by using special PIO registers or through an MMIO
space. The configuration space is typically accessed by the BIOS or
the operating system kernel to initialize or configure the Base Ad-
dress Registers (BAR). Base Address Registers are defined by the
PCI standard and used to specify the address at which the device
memory is mapped in the PIO or MMIO address spaces.

Access to configuration space registers is usually emulated for
fully virtualized guests, and in some cases also for privileged VMs.
In this case, whenever a guest accesses a configuration space, the
request is intercepted by the VMM, which incurs a significant per-
formance overhead. Therefore, in order to improve the perfor-
mance, some VMMs (e.g., KVM) allow to directly pass PIO or
1We deliberately use the term VMM instead of hypervisor, as the
latter traditionally is not capable of providing a full-fledged guest
environment and does not support multiple VMs.



MMIO accesses [21], except for the accesses targeting the device
configuration memory.

2.3 Hardware IOMMU
To improve the isolation, performance, and security of I/O de-

vices, hardware supported I/O Memory Management Units (IOM-
MUs) were introduced [26]. In particular, Intel VT-d [27] provides
hardware support for DMA and interrupt virtualization. DMA vir-
tualization (a.k.a. DMA remapping) enables system software to
create multiple isolated DMA protection domains by allocating a
subset of the host physical memory to a specific domain.

The DMA isolation is performed by restricting memory access
from I/O devices to a specific physical memory domain set. More
precisely, the DMA isolation mechanism is able to exclusively as-
sign a set of physical pages to a particular I/O device. For this pur-
pose, the VT-d architecture defines a multi-level page table struc-
ture for the DMA address translation.

2.4 Interrupt Remapping
In a multiprocessor environment, hardware interrupts are han-

dled either by the per-processor Local Advanced Programmable
Interrupt Controller (LAPICs) or by the external I/O APIC, which
is part of the system chipset. LAPICs are responsible for receiv-
ing and sending local interrupts from various sources, including
special pins in the processor, the APIC timer, or the performance-
monitoring counters. LAPICs can also receive interrupts via the
Inter-Processor Interrupt (IPI) mechanism to get notifications from
other processors. Finally, interrupts can also originate from exter-
nal interrupt sources (e.g., I/O devices) that are connected to the I/O
APIC. In this case, the I/O APIC translates these requests to corre-
sponding interrupt messages using its redirection table, and deliv-
ers them to the target LAPIC. The LAPIC then decides whether to
forward the interrupt to the processor or not.

There are two main types of interrupts that can be generated
by I/O devices: legacy interrupts and Message Signaled Interrupts
(MSI). Legacy interrupts use dedicated wires, while MSI interrupts
use an in-band mechanism. MSIs are created by a DMA write to the
memory mapped LAPIC region as step (1) and step (2) of the nu-
merical path in Figure 3 show it. Such interrupts encode their own
attributes (interrupt vector, destination processor, delivery mode,
etc.) into the address and data of the DMA request. Basically, it
means that a guest VM with a directly assigned device can also use
this mechanism to signal an MSI to a physical processor via a sim-
ple DMA write operation. However, this can be fatal for a system
as an arbitrary interrupt vector could be called from unprivileged
guests [9].

To protect against such interrupt-based attacks, Intel introduced
the interrupt remapping architecture as a part of the VT-d technol-
ogy (see block IR in Figure 3). This mechanism is responsible
for isolating and routing device interrupts to corresponding virtual
machines. More precisely, when VT-d is turned on, all the inter-
rupt requests (both MSI and legacy interrupts) are extended with a
source-id attribute to identify the device that issues the interrupt
request. Moreover, the new, remappable MSI format uses only
simple attributes such as the index value that points out an entry
in the so-called interrupt remapping table to find a requested inter-
rupt vector. In this way, the device cannot call an arbitrary inter-
rupt vector directly, but only after the validation of the hardware.
After successful validation, interrupts are remapped by the hard-
ware module to the corresponding physical interrupt vectors with
the proper attributes (e.g., delivery mode). However, if Extended
Interrupt Mode (x2APIC mode) [27] is disabled, old, compatibil-

ity-format MSI interrupts can still be generated if VMM software
enables them during runtime.

2.5 A Closer Look at Commodity VMMs
Since direct device assignment has a large impact on the overall

system security and performance, we discuss that in more detail in
the case of the two VMMs we use in our tests: Xen and KVM.

Xen
Xen supports two types of passthrough modes: the software-only
Xen PCI passthrough for paravirtual guests, and the hardware IOMMU
based passthrough available for both paravirtualized and fully vir-
tualized (HVM) guests. The software-only paravirtual Xen PCI
passthrough requires VMM intervention to handle DMA requests [28].
From a security point of view, software-only paravirtual Xen PCI
passthrough gives full control over the device, which allows a com-
promised paravirtualized guest to write arbitrary machine memory
locations using a DMA attack. In contrast to that, the hardware
IOMMU based passthrough allows for remapping all the DMA
requests by the corresponding DMA remapping hardware units.
As Xen enables device passthrough for HVM guests only when
hardware based IOMMU is turned on, it is a more secure solu-
tion. In this paper, we test only the hardware IOMMU based pass-
through model as this is the preferred configuration in current pub-
lic clouds. In addition, the software-only paravirtual passthrough is
well-known to be insecure as it does not use a hardware IOMMU,
we therefore do not evaluate it in this paper.

KVM
KVM guests normally use either emulated devices or virtio devices
to perform I/O operations. Virtio is an efficient I/O virtualization
abstraction layer that allows the development of paravirtualized
drivers for guests. Similarly to Xen, direct device assignment is
only allowed when the hardware based protection (either Intel VT-
d or AMD-V) is turned on. In this setting, PCI/PCIe devices can be
assigned directly to a guest VM, thus allowing these devices to be
used almost at native speed with minimal I/O overhead.

3. SETUP AND TEST CONFIGURATION
In this paper, we describe the implementation, validation, and

execution of three classes of software-based virtualization attacks
based on direct device assignments. The attacks we present are
based on abusing the PCI/PCIe configuration space to generate de-
vice memory collisions, on performing unauthorized memory ac-
cess through DMA and MMIO regions, and on generating inter-
rupts to the VMM from a guest VM.

3.1 Threat Model
In our experiments, we run each attack against different hard-

ware and VMM configurations, according to two possible attack
scenarios. In the first scenario, we assume that the attacker has
full access to a guest machine configured with a pass-through de-
vice. This is a common setup for IaaS cloud providers that offer,
for example, direct access to video cards (e.g., Amazon EC2 Clus-
ter GPU).

In the second scenario, we assume that the attacker is able to
control or compromise the privileged VM (e.g., by exploiting vul-
nerabilities such as CVE-2008-3687, or CVE-2007-4993). Even
though this case is certainly more difficult to achieve, it still repre-
sents an important threat model that needs to be carefully evaluated.
In fact, the privileged VM is often a large piece of software, there-
fore, it is more prone to contain vulnerabilities that can be exploited
by an attacker. However, unrestricted access to the privileged VM



does not give full privileges over the physical machine [10]. For ex-
ample, VMMs (e.g., Xen) execute the privileged VM (Dom0) with
the role of a host OS, and strictly divide the physical address space
and privileges between Dom0 and the VMM. In other words, the
VMM is specifically designed to be protected against a malicious
privileged VM.

We also launched our attacks on KVM’s host OS to identify the
differences with Xen’s Dom0. However, we performed this test
only for completeness, as host OS privileges on KVM are equiva-
lent of having entire control over the VMM as well.

3.2 VMM and Hardware Setup
For our experiments, we installed the last versions of Xen and

KVM available at the time we ran our tests (i.e., Xen 4.2 and KVM
3.5). Table 1 shows the default boot settings for both VMMs and
the configurations we used in our tests.

Xen 4.2 came with a set of new virtual machine management
tools named XL that support passthrough devices by default. KVM
enables both DMA and Interrupt remapping by default, as well as
the x2APIC mode if it is supported by the hardware. x2APIC com-
bined with interrupt remapping is known to be a secure configu-
ration against interrupt attacks [9]. Device passthrough is instead
not enabled by default, but it can be manually turned on by the
administrator.

Properly configuring a VMM can be a daunting and confusing
task, even for experienced system administrators. For example,
hardware IOMMU requires the support from the CPU, the BIOS,
and the motherboard chipset. Unfortunately, these dependencies
are not always correctly documented for VMMs. For example,
our original test machine was equipped with an i5-2400 CPU (with
IOMMU support), but contained a BIOS and chipset (H67) without
IOMMU support. Both KVM and Xen refused to put our network
card in passthrough mode in this setup. However, after updating
the BIOS to a new version with IOMMU support, KVM let us put
the device in passthrough mode. This means that in practice KVM
trusted the Advanced Configuration and Power Management Inter-
face (ACPI) data structures reported by the updated BIOS, but did
not pay attention to the real chipset capabilities. This may carry
serious threat for integrated devices which have no PCIe Function
Level Reset (FLR) capabilities [29]. More precisely, an integrated
device assigned to a guest VM can be configured to send DMA
requests continuously to memory addresses belonging to the host
OS/privileged VM. While the device is assigned to the guest VM,
all these requests are blocked by the IOMMU hardware. When the
device is reassigned to the host OS/privileged VM, the VMM first
resets the device via an FLR or bridge-level reset, and then recon-
figures the IOMMU hardware to allow device access to the host
OS/privileged VM memory. However, if the VMM cannot reset
the device (e.g., FLR capability is missing), the device keeps send-
ing DMA requests which now overwrite host OS/privileged VM
memory addresses.

In conclusion, KVM lets the administrator believe the device is
in a secure passthrough mode, while the support is actually incom-
plete. To prevent this issue, system administrators are advised to
carefully check whether the CPU, the BIOS and the motherboard
chipset support hardware IOMMU. This is a clear example of con-
figurations problems related to properly setting up passthrough de-
vices. For this reason, we executed our attacks on another ma-
chine with Intel i5-2500 CPU, Q67 chipset and Intel VT-d sup-
port enabled in the BIOS. The machine was equipped with an Intel
82579LM PCIe network card that was used as passthrough device
for the experiments. The guest OSs were running Linux kernel
2.6.32-5-amd64 and 3.5.0.

3.3 Results Overview
In the rest of the paper, we use an abbreviated notation to refer

to the scenario and the target of each attack. We use the following
notation:

• Guest-to-VMM (g⇒vmm) attacks.
This is the most critical scenario, in which an attacker con-
trolling a guest VM can launch an attack against the system
VMM.

• Guest-to-Host (g⇒h) attacks.
An attacker, with full control on a guest virtual machine, can
compromise the host OS/privileged VM. Even though it is
not as powerful as the previous one, the consequences of this
attack are often as serious.

• Host-to-VMM (h⇒vmm) attacks.
As we explained above, the VMM is often separated and pro-
tected from the privileged guest VM (e.g., Xen Dom0). In
this attack, an attacker who was able to gain control in the
privileged guest OS can escalate her privileges in the ma-
chine by launching an attack against the VMM. As we high-
lighted before, we tested our attacks on KVM host OS only
to show the differences with the Xen Dom0 case.

• Guest-to-Guest (g⇒g) attacks.
These attacks aim at compromising a target guest VM start-
ing from a separate guest VM controlled by the attacker.

• Guest-to-Self (g	) and Host-to-Self (h	) attacks.
These are less severe scenarios in which the attack is con-
fined inside the attacker’s virtual machine. For this reason,
we also refer to these attacks as intra-guest and intra-host at-
tacks. In most of the cases, since the attacker has already root
privileges on the same virtual machine, the consequences of
these attacks are negligible. However, we still report these
cases for completeness. Also, they may still be relevant if the
attacker does not fully control the machine, but can exploit
a vulnerability that allow her to run the attack, or the sys-
tem has to provide some security properties in an untrusted
environment (e.g., as presented by Zhou et al. [30]).

The previous classification is based only on the originator and
target of each attack. We intentionally use this approach, instead
of a more traditional one based on the possible consequences of
each attack (e.g., Denial of Service (DoS), code execution, infor-
mation leakage, etc), because it better summarizes the results of
our tests in terms of violating the isolation property. In fact, our
main goal is to clarify which attack works under which conditions.
The fact that it can be later used to DoS the VMM, or steal some
information from other virtual machines, highly depends on other
environmental conditions that are not under our control (e.g., the
presence of other vulnerabilities in the system, and the capabilities
and motivation of the attacker). However, we will briefly describe
and comment on the possible consequences of each successful at-
tack, case by case, in the next three sections.

All the attacks, presented in this paper are summarized in Ta-
ble 2. The second column (Ref ) reports the original source in which
the attack was first proposed. The table also shows the Previous
Status of the attack, (i.e., whether we found any evidence that the
attack had been successfully implemented before our study). A
value of NC (not confirmed) means that the attack was only theo-
retically described, C (confirmed) means that it was already tested
in practice by other authors, and NEW means that the attack is pro-
posed for the first time in this paper.



Default Values Our Xen Setup Our KVM Setup
Feature Xen KVM Dom0 HVM-1 HVM-2 HVM-3 HVM-4 Host OS HVM-1
VT-d DMA Remapping 3 3 3 3 3 3 3 3 3
VT-d Dom0 DMA passthrough 7 3 3 3 3 3 3 3 NA
VT-d interrupt remapping 3 3 3 7 7 3 3 3 3
Direct Configuration Space Access 7 NA 7 3* 7 7 7 3 7
x2APIC mode on the Host 3 3 3 7 7 7 3 3 3

Table 1: Test Configurations. The table shows both the default and test configurations in our Xen 4.2 and KVM 3.5 setup on an Intel
Core (Quad) i5-2500 CPU 3,30 GHz CPU and Q67 motherboard chipset. While the Default Values column is placed only for comparison
purposes, the Our Xen Setup and Our KVM Setup columns summarize those configurations we tested our attacks on. For example, the
HVM-4 configuration on Xen means that all the hardware protection features were enabled in this configuration, but we did not give direct
configuration space access to the passthrough device being attached to the Xen guest VM. The sign NA, refers to a cell that cannot be
evaluated in the given configuration.
*Direct PIO access to device configuration memory was granted explicitly.

Previous Xen KVM
Attack Ref. Status Host HVM-1 HVM-2 HVM-3 HVM-4 Host HVM-1

PCI/PCIe Configuration Attacks
PCI/PCIe config. space access (PIO) [31] C* h	 g	 g	 g	 g	 h	 g	
PCIe config. space access (MMIO) - NEW h	 NA g	 g	 g	 h	 g	
I/O port overlapping (PIO) [30] NC h	 g	 g	 g	 g	 - g	***
I/O memory overlapping (MMIO) [30] NC h	 NA g	 g	 g	 h	 g	

Unauthorized Memory Access

Unauthorized MMIO
memory region access

[30] NC h	 g	 g	 g	 g	 h	 g	

DMA [10] C** h	 g	 g	 g	 g	 h	 g	

Interrupt Attacks
NMI - NEW h	 g⇒vmm g⇒vmm g⇒vmm g⇒vmm g⇒vmm g⇒vmm

Table 2: Overview of the results of the attacks implemented in our study.
* The attack was previously confirmed as h	, g⇒h, and g⇒vmm against an old version of Xen.
** The attack was previously confirmed as h⇒vmm, against an old version of Xen without DMA remapping hardware.
*** KVM detects the port overlapping and kills the guest. The state of CPU registers is also dumped in the Host OS.

Each cell in the table lists the results of a given attack against a
particular configuration of Xen and KVM, according to the abbrevi-
ations introduced above. Whenever the attack was not applicable,
it is marked as NA. Finally, we mark in red color the most criti-
cal results, i.e., any successful guest-to-host or guest-to-VMM at-
tacks. We do not highlight here the unexpected hardware behavior
we discovered while carrying out interrupt attacks. The unexpected
behaviors are described in Section 6.

The next three sections present an in-depth analysis of the three
classes of attacks and the result of our experiments.

4. DEVICE MEMORY COLLISION ATTACKS
In this section, we systematically examine how a VM can ac-

cess the configuration space of directly assigned devices, and what
security risks are associated to these actions. In particular, by re-
configuring a device, an attacker can create a conflict with another
device. Therefore, without enforcing the proper PCI/PCIe config-
uration space access restrictions, an attacker could ex-filtrate data
from one virtual machine to another that is under her control. More-
over, unmediated PCI/PCIe configuration space accesses can re-
sult in either privilege escalation [31] or DoS attack against the
host/privileged VM. All the attacks we present are implemented

by modifying the e1000e device driver of an Intel 82579LM PCIe
network card.

PIO Attack against the PCI/PCIe Configuration Space
Duflot et al. [31] described the dangers of enabling a VM to directly
access the configuration registers of a PCI device via the PIO space.
The authors showed that delegating PIO access to userspace or a
guest virtual machine can lead to several attacks, such as privilege
escalation between isolated virtual machines.

According to the literature, KVM emulates PIO accesses (us-
ing QEMU code [32]), thus, accessing directly the configuration
space I/O ports is not possible in normal circumstances. Xen orig-
inally allowed direct access to the PIO configuration space from
Dom0, but this was eventually emulated as well [33]. However, di-
rect access can still be allowed to fully virtualized guests (HVM)
via a guest configuration option. There is no clear conclusion still
(e.g.,[34]) whether certain guest VM configurations are insecure if
direct PCI/PCIe configuration space accesses are enabled for pass-
through devices.

For this reason, we decided to test this condition to show what
the real risks are in a practical scenario. In our experiments, we
modified the e1000e network driver to overwrite the PIO Base Ad-
dress Register (BAR) in the configuration address space of arbitrary



devices (identified by their source-id) by writing to the 0xcf8 I/O
port. The goal of our test was to address PCI devices that were
invisible from our VM. We tested our attack in various setups as
shown in Table 2, but all cases turned out to be ineffective on cur-
rent Xen and KVM versions. The reason is that PIO configuration
space accesses are always emulated, no matter what configurations
we used. In other words, we could access only the devices of our
VM, therefore restricting the attack to an intra-guest or intra-host
scenario.

MMIO Attack against the PCIe Configuration Space
PCI Express (PCIe) devices have an extended configuration space
that can be accessed via traditional memory operations (i.e., MMIO).
To test this situation, we implemented a new device configuration
space attack that can be launched via the MMIO with the goal of
manipulating the memory mapped registers of the target device.

Similarly to the PIO access attack, we addressed the PCIe config-
uration space of the targeted devices by using their source-id [35],
and then tried to modify some of their configuration registers (e.g.,
BAR). Again, we were not able to address devices that were not in
the scope of our VM, thus the attack is limited to an intra-guest or
intra-host scenario.

PIO Overlapping Attack
Zhou et al. [30] proposed several device-related attacks that could
affect already compromised operating systems. For example, PIO
overlapping is similar to the PIO configuration space attack, but in
this case the attacker can only reconfigure the configuration space
of a specific device she controls. In particular, by changing the PIO
BAR register of a directly assigned PCI/PCIe device, an attacker
can overwrite the BAR value with the one of another device at-
tached to another VM. In this way, the device memory of the two
devices will overlap, leading to data ex-filtration from one device
to the other.

To test this attack, we modified our e1000e PCIe network card
driver by changing the PIO BAR value of the card with the value
of the keyboard. We observed unresponsive keyboard and mouse
under Xen both in case of Dom0 (with dom0-passthrough mode
enabled) and HVM guests. On a KVM host, however, the port
overlapping was successful but without any apparent effect. In-
terestingly, when the attack was launched from the KVM guest
(HVM-1), the host kernel detected our overlap attempt, and killed
the guest VM instantly. Additionally, the host OS provided a clear
debug message about a hardware error that occurred during the reg-
istration of the I/O port read operation for the keyboard.

MMIO Overlapping Attack
In an MMIO overlapping attack (Figure 1), an attacker controlling
one guest VM with an assigned passthrough device can access the
device memory space of another device attached to another VM.

The attack was implemented by changing the MMIO BAR val-
ues of our PCIe passthrough network card to overlap with the BAR
value of a graphics card. In all configurations, we observed that
the Ethernet card became unresponsive inside the attacker VM. In
contrast with the previous attack, we did not find any mechanisms
implemented in Xen and KVM to notify users about these overlap-
ping I/O memories.

To summarize the results, all the configurations that we tested are
protected against PIO/MMIO configuration space manipulations in
both Xen and KVM.

Figure 1: MMIO overlapping attack. An attacker on VM1 sets the
MMIO Base Address Register (BAR) value of a passthrough device
(PT device1) to that of another device (PT device 2), assigned to
VM2. As a result of this manipulation, the attacker can get access
to the device memory of PT device 2.

5. UNAUTHORIZED MEMORY ACCESS
In this section, we describe two types of attacks to access pro-

tected memory regions via unauthorized memory device requests.
These attacks can be used to steal and ex-filtrate information in a
cloud environment, or to control devices assigned to other VMs.

Unauthorized MMIO Region Access
A device can be accessed through physical memory in two ways:
using MMIO and using Direct Memory Access (DMA). As the au-
thors mention in [30], an attacker can manipulate the device be-
havior by writing into these memory regions. The attack can be
accomplished in two steps: 1) the attacker remaps an MMIO re-
gion, belonging to a victim device, into a new virtual address by
using ioremap_nocache Linux kernel function, 2) she injects
malicious code/data into the remapped memory region by using the
iowrite32() Linux kernel function. By doing so, the memory
of the victim device is manipulated and can be controlled by the
attacker.

In order to test the protection mechanisms offered by Xen and
KVM, we implemented a proof-of-concept attack in which we over-
wrote the entire MMIO address space of a second network adapter
by modifying the e1000e driver of the attacker network card. As
the second adapter, which had Internet connection, was assigned
to the same VM as the attacker network card, we could access its
MMIO space. In our tests on Xen and KVM guests, the second
adapter’s Internet connection was lost and the guests became iso-
lated from the network.

The same experiment was also performed on our KVM host,
and it completely crashed the operating system. Therefore, we can
conclude that none of the tested VMMs implemented a detection
technique for checking these types of unauthorized memory region
modifications. However, these attacks only work in intra-guest and
intra-host scenarios.

DMA Attack
User-space processes are prevented from accessing protected mem-
ory regions by a memory controller known as Memory Manage-



Figure 2: Intra-guest DMA attack. An attacker, controlling VM1,
can read/write arbitrary intra-guest memory locations by a loop-
back mode passthrough device (PT device).

ment Unit (MMU). However, drivers that communicate to PCI/PCIe
devices can directly access any physical memory address space by
using Direct Memory Access (DMA) operations. Since the physi-
cal address space includes the whole system memory, a malicious
driver could potentially read and write the entire memory of the
system. To prevent this from happening, hardware vendors de-
signed an hardware protection mechanism (called IOMMU). As we
already explained in Section 2, IOMMU is a memory management
unit that maps I/O bus addresses to physical memory addresses for
all DMA memory transactions on the bus. The role of the IOMMU
is similar to that of a traditional MMU: 1) it translates the memory
I/O address range of one device to the corresponding real physi-
cal address, and 2) it prevents any unauthorized access from one
device address space to another. Even though the IOMMU es-
tablishes memory barriers among different device address spaces,
which parts of the memory should be assigned to which devices
remains an open research problem [36]. Since it is not clear how
different VMMs deploy such a protection mechanism, we imple-
mented and tested different DMA attacks under three main threat
models: intra-guest, guest-to-guest and guest-to-host.

To launch the attack, we put our passthrough network card into
loopback mode similarly to Wojtczuk [10] to directly connect the
card’s internal transmission buffer (TX) to the receiving buffer (RX)
(i.e., to receive all the packets that were sent by the card). We then
associated a transmission (TXb) and a receiver buffer (RXb) to the
DMA channel by using the dma_map_single() function. This
allows us to link the guest virtual address of the transmission buffer
(TXb) to the physical address that we want to access (Figure 2).

After the setup phase was completed, we performed two different
experiments. First, we tried to perform a DMA operation using a
physical memory location belonging to a different virtual machine.
In this case (points 2 and 3 in Figure 2), the DMA Remapping En-
gine (DMAR) successfully blocked the attack as one VM is not
allowed to access the memory of other VMs for I/O operations. We
then repeated the operation using a physical address belonging to
another driver that runs inside the attacker VM (step 2’ in Figure 2).
This time, the DMA operation succeeded as the DMA remapping
was not setup to create intra-guest protection domains. As a result
(points 4 to 6 in Figure 2), the stolen data was transferred into the

card’s internal TX buffer, and then into the RX buffer thanks to the
loopback mode. Finally, another DMA transaction moves the con-
tent of RX buffer to the receiver buffer in the VM (RXb), making
the data accessible to the driver (and therefore to the attacker). A
similar approach can also be used to perform an arbitrary memory
write operation.

We implemented our DMA attacks by extending the e1000e net-
work driver. It is important to note that DMA remapping was al-
ways turned on during our attack, otherwise we could not have put
the network card into passthrough mode.

We were able to successfully run intra-guest and intra-host DMA
attacks on both VMMs to retrieve the code of the kernel pages of
the guest OS. Considering the guest-to-guest case, we verify that
both VMMs implement DMA remapping correctly and does not
allow inter-guest DMA operations. We obtained the same results
for guest-to-host attacks, as the protection isolated the host address
space, and the guest was redirected to its own address space.

6. INTERRUPT ATTACKS
In this section, we present a number of interrupt-related attacks.

In particular, we introduce a novel attack that evades all currently
available hardware and software protection mechanisms. After re-
porting this attack to vendors, we concluded that the problem stems
from a misunderstanding between the hardware and software, and
cannot be resolved by existing technologies without limiting plat-
form capabilities. We also describe other unexpected hardware
conditions that we discovered by fuzzing DMA operations.

Interrupt attacks could be used to DoS a VMM or a privileged
VM, or, in more severe cases, even to execute arbitrary code inside
them.

6.1 Abusing Message Signalled Interrupts
Recent PCIe devices generate interrupts by using the Message

Signalled Interrupt (MSI) technology. Wojtczuk et al. [9] demon-
strated that MSIs can also be generated by enforcing a device’s
scatter-gather mechanism during a DMA transaction by writing to
a specific MMIO space that belongs to the LAPIC (0xfeexxxxx). In
this case, the passthrough device writes specific information (e.g.,
interrupt vector, and delivery mode) to that predefined interrupt ad-
dress range, which results in an interrupt generation with the preset
interrupt vector. From an attacker’s point of view, MSIs are advan-
tageous as they can be generated without the need to compromise
the firmware of a device: only the device driver has to be under her
control. Practical interrupt attacks via passthrough devices have
already been discussed in previous works [9], where the authors
showed how an attacker could execute arbitrary code with VMM
privileges by invoking Xen hypercalls from a guest OS.

However, interrupt remapping introduced remappable-format
MSIs, which prevent an attacker from generating MSI interrupts
with arbitrary interrupt vectors (i.e., compatibility-format MSI) as
the numerical path on Figure 3 shows it. The only way to entirely
forbid the generation of compatibility-format MSIs is to switch on
the x2APIC mode (Section 2.4). In our experiments, we observed
that x2APIC mode is turned on by default in KVM, but needs to
be manually selected in older versions of Xen. This is considered
to be the most secure configuration. To the best of our knowledge,
we present here the first attack that succeeds when both interrupt
remapping and x2APIC mode are enabled.

Fuzzing the Interrupt Generation
To test for the presence of low-level problems in the interrupt gen-
eration and handling phase, we designed and implemented a tool
called PTFuzz, by extending Intel’s e1000e network driver. PT-



Fuzz is optimized to launch any type of MSI by fuzzing both the
MSI address and its data components as well as the size of DMA
requests. It works by writing data (i.e., MSI data component) to the
LAPIC MMIO range using DMA. As PTFuzz is capable of fuzzing
each field of an MSI separately, it can be fine-tuned to create both
compatibility and remappable MSIs formats. The operation of PT-
Fuzz can be summarized in a few steps (see Figure 2 for context
information):

1. Prepare a transmission buffer (TXb) in the guest OS, and
populate it with the MSI data component.

2. Prepare a receiver buffer (RXb) in the guest OS.

3. Change the physical address of the RXb buffer according to
the MSI address component to point to the memory mapped
interrupt space (i.e., MMIO LAPIC).

4. Move the MSI data component via a DMA transaction into
the card’s internal TX buffer.

5. Send the data in loopback mode into the card’s RX buffer.

6. Move the MSI data from the card’s internal RX buffer into
the corresponding MMIO LAPIC address range specified by
the MSI address (0xfeexxxxx) with a given DMA request
size.

7. If the MSI data component is fuzzed, then select a new MSI
data value and repeat from Step 1.

8. If the MSI address component is fuzzed, then select a new
MSI address value and repeat from Step 3.

Fuzzing the entire MSI data and address spaces would require
an extensive amount of work to manually verify and validate each
result. For this reason, we decided to focus our effort on those MSI
fields that were either more interesting from an attacker’s point of
view, or had clear constraints set by the vendors.

In particular, here we present the results we obtained by fuzzing
the vector field of a compatibility format MSI data component and
the don’t care field of a remappable format MSI address compo-
nent. Whenever we observed an unexpected hardware behavior as
a result of our test cases, we instrumented the code of the VMM
to collect all the information required to understand the problem in
detail. The following two sections discuss our results.

6.2 Interrupt Vector Fuzzing
In our first experiment, we fuzzed the vector field of the com-

patibility format MSI data as well as the size of the MSI request.
During the tests, we noticed that the VMM/privileged VM received
a legacy Non-Maskable Interrupt (NMI) for some values of the vec-
tor. This happens even when all the existing hardware protections
mechanisms were turned on. In addition, we got the same results
when the size of the MSI request had not conformed with the re-
quired MSI transmission size (i.e., it was not 32-bit long).

Non-Maskable Interrupts are normally generated as a result of
hardware errors that must be immediately handled by the CPU, in
order to prevent system damage. From an architectural perspective,
NMIs are exceptions and not interrupts. This is a subtle, but very
important difference. Interrupts are asynchronous events that are
handled when the CPU decides to do so. On the contrary, excep-
tions are synchronous events that are served instantly. In our case,
the most important difference is that devices do not extend NMIs
with the source-id information. As a consequence, NMIs are not
subject to interrupt remapping. This is a very significant point.

Figure 3: Interrupt generation by PTFuzz. This figure describes
two interrupt generation cases indicated by the numerical and al-
phabetical paths. On the numerical path, PTfuzz requests a legiti-
mate MSI (1) by a DMA write operation to the MMIO LAPIC (2)
which is first verified by the DMA remapping engine (DMAR).
As a result, a compatibility-format MSI is generated (3) that is
blocked by the interrupt remapping engine (IR). The alphabetical
path, however, shows our unsupported MSI request (a), which the
platform detects and blocks. However, when System Error Report-
ing is enabled, the platform sets the SERR status bit on the Mem-
ory Controller Hub (MCH) PCI Device (b). As a result, a host-side
Non-maskable Interrupt (NMI) is directly delivered to the physi-
cal CPU (c) executing the privileged VM/host OS/VMM. SERR
induced NMIs, however, may cause host software halt or trigger
the host-side NMI handler (d) which opens the door for Guest-to-
VMM escapes.

Another key observation is that we did not generate an MSI that
was delivered as an NMI. Our tests indirectly generated a host-side
legacy NMI to one of the physical CPUs (i.e., Bootstrap Processor
- BSP). More precisely, as a result of performing an unsupported
MSI request by a DMA transaction to the memory mapped inter-
rupt space, the platform blocks the MSI request and raises a PCI
System Error (SERR#) which is delivered as NMI to report hard-
ware errors. In our case, the SERR status bit is set by the platform
on the Memory Controller Hub - MCH (BDF 00:00.0) PCI device.
Thus, the unchecked host-side NMI is forwarded to the physical
CPU executing the privileged VM/host OS/VMM. Depending on
privileged VM/host OS/VMM kernel configuration, such an NMI
may be handled by the privileged VM/host OS/VMM or can result
in a host software halt (panic). Figure 3 gives a high-level overview
about the attack. When we took a closer look at this issue, we no-
ticed that the NMI was spawned when a compatibility format MSI
is requested with vector numbers below 16 or with an invalid re-
quest size (i.e., not 32-bit long). The reason for the former lies
in the fact that MSI cannot deliver interrupts with vector less than
16 [16].

All these operations are executed at the chipset level, and it took
a considerable amount of time and effort to understand all the de-
tails. After discussing the problem with the Xen security group and
Intel Product Security Incident Response Team (Intel PSIRT), we
concluded that we identified a platform problem that affects all the
machines which enable System Error Reporting. As System Er-
ror Reporting is an essential feature on server machines to report
legitimate hardware errors for providing Reliability, Availability,
Serviceability (RAS), this attack seriously threatens the main se-



curity feature of hardware virtualization: the isolation of virtual
machines.

The main difference with previous interrupt attacks is that our
NMI injection attack works on configurations where interrupt remap-
ping is enabled. In fact, the DMA Remapping Engine cannot pro-
tect against our DMA write as the attacker intends to manipulate
only legitimate, intra-guest physical addresses. Second, the inter-
rupt remapping is circumvented as NMIs are considered to be ex-
ceptions by the architecture, so no source information is added dur-
ing their delivery. Without source-id the interrupt remapping En-
gine is not able to validate the interrupt. In addition, the NMI was
indirectly spawned by the Memory Controller Hub (and not by our
passthrough device) which is handled by the host. Finally, x2APIC
mode, which forbids to reenable compatibility format MSIs during
runtime, is also circumvented.

NMI Injection Evaluation
We successfully verified our NMI injection attack on both Xen 4.2
and KVM 3.5.0 in the configurations shown in Table 1, however,
every VMM, which runs on a platform with System Error Report-
ing enabled, can be affected. In order to be sure that the attack over-
comes all the available protection mechanisms, we enabled DMA
and interrupt remapping as well as x2APIC mode on the privileged
VM/host (this configuration was known to be safe against all known
interrupt attacks).

Our physical NMI can have three different scenarios with re-
spect to its impact depending on the configuration of the privileged
guest/host/VMM kernel. First, we simulate a legitimate hardware
error induced purely by software from the guest VM which is re-
ported to the privileged VM/Host OS/VMM. As a result, the sys-
tem administrator believes that the MCH has some serious hard-
ware problems and the motherboard must be replaced as soon as
possible. This fact on its own leads to an indirect Denial of Ser-
vice attack against the host. Second, depending on the privileged
guest/host OS/VMM kernel configuration, the system can halt as it
cannot recover from NMIs that were signalled as a result of a PCI
System Error (SERR#). Note that we could reproduce this case
as well, which means a direct Denial of Service attack against the
host. Finally, if the host kernel does not halt, the attacker has still
chance to execute arbitrary code on the host by means of this host-
side NMI.

To achieve this, we have to take into consideration similar inter-
rupt attacks that were used in the past to execute arbitrary code [9]
by exploiting a race condition. A similar race condition could be
used in our case as well:

1. Prepare a shellcode that is made of four parts: a) The code
to execute in the VMM, b) reference to a swapped page, c)
padding, d) pointer to the code to execute

2. The attacker needs to count the number of pages between
the location of the page fault handler entry in the Interrupt
Descriptor Table (IDT) and that of the VMM stack to set the
length of padding (c) in the shellcode. This padding is used
to span that distance and overwrite the page fault entry in
the IDT with a pointer (d), that points to the code (a) to be
executed in the VMM.

3. Place the shellcode in the MMIO address space of the guest
VM that the attacker controls. As the copy operation from
the MMIO space is slow enough (MB/s) it can be interrupted
with high probability.

4. As hypercalls contain code snippets that copy memory from
guest VM space into that of the VMM, call legitimate hy-

percalls in a loop to catch the very moment when the corre-
sponding function (i.e., copy_from_user()) copies the guest
buffer with the shellcode.

5. Create a host-side NMI from the guest via a malformed MSI
request to interrupt the hypercalls.

6. Modify a register value (e.g., rax) inside the interrupted copy
operation in the hypercall by the NMI handler (race condi-
tion) to control the length of copy operation. For example,
the NMI handler can return with a large value (e.g., error
code) in the rax register which register indirectly influences
the length of copy operation (e.g., mov rcx, rax).

7. While copying the shellcode into the VMM space the hyper-
call handler will end up in a page fault, as we placed a refer-
ence to a swapped page (b) into our shellcode. However, the
page fault handler entry had already been overwritten, so the
injected code (a) is launched.

This exploit sequence is difficult to apply in our case because hard-
ware interrupt handlers (e.g., NMI) do not modify saved register
states (see point 6 in the list above). Thus, they cannot influence the
behavior of the interrupted handler (e.g., hypercall). However, the
NMI injection attack is pervasive and works on all Intel platforms
which enable System Error Reporting, which is a typical configu-
ration for server platforms (e.g., IaaS clouds).

Mitigation
As we discussed above, there is no publicly known hardware pro-
tection mechanism available against our NMI injection attack. We
responsibly reported the problems and received a Xen Security Ad-
visory (XSA-59) and a CVE number (CVE-2013-3495) from Xen
and MITRE, respectively. In addition, after a long discussion pe-
riod with Xen and Intel, we concluded that there is no ideal solu-
tion available against our attack. Considering mitigations, SERR
reporting can either be disabled on the Memory Controller Hub,
or system software can block SERR error signaling due to Unsup-
ported Request error resulting from malformed MSI requests. The
former advice is quite intrusive as it suppresses all the system errors
coming from the MCH, which affects legitimate hardware errors as
well. At the same time, this is supported by all the chipsets. The
second option is a more fine-grained solution, however, according
to recent debates [37] between Xen and Intel, it seems that the prob-
lem cannot be put to rest as software patches are required every
time a new chipset/processor is released. In addition, these patches
disable SERR which may affect legitimate requests. In summary,
both of the above mitigations can be a daunting and very expensive
operation especially for cloud operators who expose VM instances
for public use with passthrough devices (e.g., Amazon EC2).

6.3 Don’t Care Field Fuzzing
In our second test, we used PTFuzz to modify the don’t care

field of remappable format MSI address. don’t care fields should
never influence the behavior of the hardware if manipulated. Inter-
estingly, this is not the case for remappable format MSIs. In our
experiments, we combined a remappable format MSI data with a
corresponding MSI address component in a way to create an In-
terrupt Remapping Table index larger than the number of entries in
that table. When the fuzzer modified the don’t care field against a
fully protected KVM guest, we observed that three different types
of interrupt faults were generated on the host OS/VMM (Figure 4).



INTR-REMAP: Request device [00:19.0] fault index 77ff

INTR-REMAP:[fault reason 32] Detected reserved fields in

the decoded interrupt-remapped request

INTR-REMAP: Request device [00:19.0] fault index 8fff

INTR-REMAP:[fault reason 32] Detected reserved fields in

the decoded interrupt-remapped request

DC=0

INTR-REMAP: Request device [00:19.0] fault index ffff

INTR-REMAP:[fault reason 32] Detected reserved fields in

the decoded interrupt-remapped request

DC=1, DC=2

INTR-REMAP: Request device [00:19.0] fault index ffff

INTR-REMAP:[fault reason 34] Present field in the IRTE

entry is clear

DC=3

Figure 4: Raising different types of interrupt faults on the KVM
host by fuzzing the don’t care (DC) field of a remappable format
MSI address. Note that both the fault reason and the fault index
values (Interrupt Remapping Table Entries - IRTE) are changing
on different DC values.

Interrupt Remapping Fault Evaluation
This case is very similar to the NMI injection attack in the sense
that the attacker can spawn a partially controllable host-side hard-
ware fault by fabricating unexpected conditions. We do highlight
here that this case also opens a door towards practical guest-to-
VMM escapes. Theoretical exploitation scheme can either be a
similar race condition presented in Section 6.2 or a buffer overflow
by influencing the fault reason or the fault index values in the hard-
ware fault handler. Until now, we could not identify a problem in
VMM software that allows for practical exploitation. At the same
time, hardware problems are orthogonal to VMM implementation
bugs, thus, it is enough to find a single problem in any VMM im-
plementation, and the attacker can succeed.

All the above problems demonstrate the hardware does not al-
ways follow the specifications from vendors or the synergy is miss-
ing between hardware and software for flawless collaboration.

7. RELATED WORK
To the best of our knowledge, we are the first who systematically

discuss and implement a wide range of attacks that exploit the de-
vice passthrough technology. However, a considerable amount of
related work exists in the three attack areas that we cover in this
paper. More information about possible attacks in hardware virtu-
alization can be read in [38].

Attacks via the PCI/PCIe configuration space.
Zhou et al. [30] presented several attacks (e.g., MMIO overlap-

ping) via the PCI/PCIe configuration space. However, the attacks
were presented in a different context, and the authors’ focus was
more on the development of a small hypervisor to prevent these de-
vice passthrough attacks from causing damage in a compromised
OS. On the contrary, we aim at revealing design, configuration,
and implementation weaknesses in commodity VMMs that can be
abused to escalate privileges, read restricted memory regions and
perform DoS attacks.

A privilege escalation attack via PIO based PCI/PCIe configura-
tion space accesses was discussed for USB UHCI [39] controllers
by Duflot et al. [40, 31]. The authors were able to manipulate the
secure level of OpenBSD and escalate root access in privileged do-
mains (e.g., Xen Dom0) from arbitrary guests by evading Intel VT-
x protection. Since Xen does not allow direct configuration space
access any more [33], our PIO attacks were confined inside the at-
tacker guest. We faced the same issues with KVM as well.

DMA attacks. The introduction of DMA opened the door to
a new set of attacks. By misusing DMA transactions either a na-
tive or a virtualized system can be compromised by reading/writing
arbitrary physical memory locations. A long list of DMA attacks
exists in the literature, based on USB On-The-Go controllers [41],
PCI cards [42, 43], or FireWire controllers [44, 45, 46, 47, 48].
Even though, most of these attacks were presented for native envi-
ronments, proof-of-concept codes for virtual environments exist as
well [10]. The main difference with our paper is that none of the
previous works examined the impact and limitations introduced by
existing DMA protection mechanisms (e.g., DMA remapping).

Interestingly, a DMA attack can also be launched by a code re-
siding on the northbridge [49, 14]. From one aspect, this higher
privileged code is advantageous for an attacker. However, mali-
cious DMA transactions are still ineffective on systems with DMA
remapping enabled (e.g., Intel VT-d is turned on).

Interrupt Attacks. Wojtczuk et al. [9] demonstrated that the
x86-64 architecture is vulnerable against Message Signalled Inter-
rupt (MSI) based attacks. Later, Müller et al. [50] pointed out a
similar interrupt attack on PowerPC. However, both of the attacks
worked only without an active interrupt remapping engine. The au-
thors showed that an attacker can force the generation of unmedi-
ated MSIs in these cases, allowing her to send specific interrupts
to the physical CPU. This attack even allowed Wojtczuk et al. [9]
to execute arbitrary code with VMM privileges in a given Xen in-
stallation. In contrast to that, our host-side NMI interrupt cannot
be blocked with currently available protection mechanisms (e.g.,
interrupt remapping engine) without limiting platform functionali-
ties. Also, we can launch our attack from fully-virtualized (HVM)
guests that are known to be more isolated than their paravirtualized
counterparts (e.g., because of the hardware-supported protection
ring for the VMM code).

Protection Evasion. While we focus on circumventing all the
hardware protection mechanisms currently available, other approa-
ches try to disable them. For example, an attacker can modify
hardware-level data structures (e.g., Interrupt Descriptor Table) or
configuration tables (e.g., DMA remapping table) [51] to turn off
IOMMU. Another approach aims at making the illusion of a non-
parsable DMA remapping table. To achieve this, an attacker has to
set a zero length for such a table during boot time. Another class of
attacks aim at modifying the metadata exposed by I/O controllers
to mislead the IOMMU. One such an attack is described by Lone-
Sang et al. [13]. Here, the attackers could map two I/O devices into
the same physical memory range by impersonating a PCI Express
device with a legacy PCI device. This attack, however, requires
physical access to the victim machine.

We partially discuss a similar approach in Section 3, where we
presented a problem to circumvent the interrupt remapping engine
on KVM by updating a BIOS on a motherboard that originally does
not support this technology. In this way, an attacker could use a
passthrough device without the appropriate protections enabled.

Recently, an interrupt remapping source validation flaw was re-
ported by the Xen security team (CVE-2013-1952). More pre-
cisely, MSI interrupts from bridge devices do not provide source
information, so the interrupt remapping table cannot check the orig-



inator bridge. In this way, a VM that owns a bridge can inject arbi-
trary interrupts to the system via MSI interrupts.

8. CONCLUSIONS
In this paper, we presented and tested a wide range of pass-

through attacks on commodity VMMs. Some of them were already
publicly known while others were presented for the first time in
this paper. To discover new vulnerabilities, we designed and imple-
mented an automatic fuzzer called PTFuzz. This tool successfully
detected various unexpected hardware behaviors while running on
commodity VMMs.

Our experiments showed that software patches (e.g., when the
device configuration space is emulated) and robust hardware pro-
tections can indeed prevent all previously discovered attacks. No-
netheless, we demonstrated that the proper configuration of these
protection mechanisms can be a daunting task. Unfortunately, VMMs
remain vulnerable to sophisticated attacks. In this paper, we discov-
ered and implemented an interrupt attack that leverages unexpected
hardware behaviour to circumvent all the existing protection mech-
anisms in commodity VMMs. To the best of our knowledge, this is
the first attack that exhibits such a behaviour and to date it seems
that there is no easy way to prevent it on Intel platforms.

The fact that we discovered a major vulnerability as well as an
unexpected hardware behaviour in Intel platforms does not neces-
sarily mean that VMMs are threatened in the wild, but certainly
raises an alarm to cloud operators. We believe that our study can
help them to better understand the limitations of their current archi-
tectures to provide secure hardware virtualization and to prepare for
future attacks.
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