Malicious Website Detection

Effectiveness & Efficiency Issues

Birhanu Eshete
eshete@fbk.eu
Fondazione Bruno Kessler, Trento, Italy

1st SysSec Workshop
July 6th, 2011 - Amsterdam, The Netherlands
Malicious Websites
Malicious Websites

- uncover vulnerabilities (browser, plugins, webapp, server), initiate attack
- steal sensitive information, install malware, compromise victim’s machine
Malicious Websites

- uncover vulnerabilities (browser, plugins, webapp, server), initiate attack
- steal sensitive information, install malware, compromise victim’s machine
Malicious Websites

- uncover vulnerabilities (browser, plugins, webapp, server), initiate attack
- steal sensitive information, install malware, compromise victim’s machine

111.4% rise [2009-10], 79.9% malicious legitimate sites [2010], WebSense’10

310,000 unique malicious domains, 4.4m average monthly malicious pages, July 2009-June 2010, Symantec’10

70 / top 100 reputable websites host malicious content/ have luring redirections to other malicious websites, Symantec’11
Analysis & Detection Approaches
Analysis & Detection Approaches

- Blacklist-based [Google Safe Browsing]
Analysis & Detection Approaches

- **Blacklist-based** [Google Safe Browsing]
- **URL & host information** [Canali et. al. 2011], [Ma et. al. 2009]
Analysis & Detection Approaches

- **Blacklist**-based [Google Safe Browsing]
- **URL & host information** [Canali et. al. 2011], [Ma et. al. 2009]
- **Page content** [Canali et.al. 2011], [Tsung et. al. 2010], [Seifert et al. 2008]
Analysis & Detection Approaches

- **Blacklist-based** [Google Safe Browsing]
- **URL & host information** [Canali et. al. 2011], [Ma et. al. 2009]
- **Page content** [Canali et.al. 2011], [Tsung et. al. 2010], [Seifert et al. 2008]
- **Execution trace** [Qassrawi et al. 2011], [Kim et al. 2011], [Dewald et al. 2010], [Cova et al. 2010], [Iknici et al. 2008], [Alexander et al. 2008]
Analysis & Detection Approaches

- **Blacklist-based** [Google Safe Browsing]
- **URL & host information** [Canali et. al. 2011], [Ma et. al. 2009]
- **Page content** [Canali et.al. 2011], [Tsung et. al. 2010], [Seifert et al. 2008]
- **Execution trace** [Qassrawi et al. 2011], [Kim et al. 2011], [Dewald et al. 2010], [Cova et al. 2010], [Iknici et al. 2008], [Alexander et al. 2008]

1. Malicious websites are increasing and attack payloads are getting sophisticated (**zero-day exploits!**)
Analysis & Detection Approaches

- **Blacklist-based** [Google Safe Browsing]
- **URL & host information** [Canali et. al. 2011], [Ma et. al. 2009]
- **Page content** [Canali et.al. 2011], [Tsung et. al. 2010], [Seifert et al. 2008]
- **Execution trace** [Qassrawi et al. 2011], [Kim et al. 2011], [Dewald et al. 2010], [Cova et al. 2010], [Iknici et al. 2008], [Alexander et al. 2008]

1. Malicious websites are increasing and attack payloads are getting sophisticated (**zero-day exploits**)!

2. Current approaches are biased to a single prominent attack (**partial snapshot=>false signals**)!
Analysis & Detection Approaches

- **Blacklist-based** [Google Safe Browsing]

- **URL & host information** [Canali et. al. 2011], [Ma et. al. 2009]

- **Page content** [Canali et.al. 2011], [Tsung et. al. 2010], [Seifert et al. 2008]

- **Execution trace** [Qassrawi et al. 2011], [Kim et al. 2011], [Dewald et al. 2010], [Cova et al. 2010], [Iknici et al. 2008], [Alexander et al. 2008]

1. Malicious websites are increasing and attack payloads are getting sophisticated (zero-day exploits!)

2. Current approaches are biased to a single prominent attack (partial snapshot=>false signals!)

3. Page features are evolving contionously(completeness, semantics, selection => outdated models!)
Effectiveness & Efficiency Issues
Effectiveness & Efficiency Issues

• Which machine learning technique is effective (false signals) and efficient (time to analyze single page) for detecting malicious websites and why?
Effectiveness & Efficiency Issues

• Which machine learning technique is effective (false signals) and efficient (time to analyze single page) for detecting malicious websites and why?

• How and when to update models when page features change?
Effectiveness & Efficiency Issues

- Which machine learning technique is effective (false signals) and efficient (time to analyze single page) for detecting malicious websites and why?
- How and when to update models when page features change?
- Which features to select when there are many candidate feature sets?
Our Approach & Progress
Our Approach & Progress

• A holistic approach that:
Our Approach & Progress

- A holistic approach that:
 - combines URL tokens, host information, page content & execution-trace features (to capture a more comprehensive snapshot of a page), SVMs & HMMs
Our Approach & Progress

• A holistic approach that:

 • combines URL tokens, host information, page content & execution-trace features (to capture a more comprehensive snapshot of a page), SVMs & HMMs

 • incorporates feature evolution (feature-diff monitoring to catch zero-day exploits), GAs
Our Approach & Progress

- A holistic approach that:
 - combines URL tokens, host information, page content & execution-trace features (to capture a more comprehensive snapshot of a page), SVMs & HMMs
 - incorporates feature evolution (feature-diff monitoring to catch zero-day exploits), GAs
 - continuously updates models (fast re-training on selected features), Online LAs
Our Approach & Progress

• A holistic approach that:
 • combines URL tokens, host information, page content & execution-trace features (to capture a more comprehensive snapshot of a page), SVMs & HMMs
 • incorporates feature evolution (feature-diff monitoring to catch zero-day exploits), GAs
 • continuously updates models (fast re-training on selected features), Online LAs

• Work in progress:
Our Approach & Progress

- A holistic approach that:
 - combines URL tokens, host information, page content & execution-trace features *(to capture a more comprehensive snapshot of a page)*, SVMs & HMMs
 - incorporates feature evolution *(feature-diff monitoring to catch zero-day exploits)*, GAs
 - continuously updates models *(fast re-training on selected features)*, Online LAs

- Work in progress:
 - Feature enhancement using Support Vector Machines, *preliminary SVM binary model*
Our Approach & Progress

• A holistic approach that:

 • combines URL tokens, host information, page content & execution-trace features (to capture a more comprehensive snapshot of a page), SVMs & HMMs

 • incorporates feature evolution (feature-diff monitoring to catch zero-day exploits), GAs

 • continuously updates models (fast re-training on selected features), Online LAs

• Work in progress:

 • Feature enhancement using Support Vector Machines, preliminary SVM binary model

 • Genetic Algorithms for feature evolution (cross-over and mutation)
Thank You!