

Adapting Econometric Models, Technical Analysis and Correlation Data to Computer Security Data

Spyros K. Kollias, Vasileios Vlachos, Alexandros Papanikolaou and Vassilis Assimakopoulos

Financial Forecasting

- Mainly based on processing past data
- A temporal process
 - Time series analysis is suitable!
 - e.g. ARMA, ARIMA, GARCH, ACD models
- Has successfully been applied to other fields in order to forecast, e.g.:
 - Wheat area and production (Pakistan)
 - Traffic flow
 - Next-day price of electricity
 - Air pollution levels

Exploiting Publicly Available Computer Security Data

- WildList (malware lists)
- DShield (various attacks)
- Social networks
 - Security-related accounts (e.g. AV vendors)
 - Users' posts
- Underground world
 - Price for stolen credit card numbers
 - Price for e-mail addresses for sending spam
 - More expensive => Harder to get => Better security
 - Real-life financial transactions!

Exploiting Publicly Available Computer Security Data (cont.)

- Will the publicly-available data suffice?
 - If not, use posts from social networks, search engines' query data, etc.
 - The developed tool will complement existing systems
- Creating the Analogy
 - Treat all threats as a stock index, e.g.:
 - Observed attacks over time ~ Price
 - Volume information will be lost
 - Categorise threats according to their nature
 - Better approach as it produces/preserves extra info
 - Sum of attacks ~ Volume
 - Severity of attacks ~ Price
- Depending on the amount of available information, the use of all applicable models may be impeded.
- Flexibility and ability to adapt new parameters

Will it Work?

- Efficient Market Hypothesis (EMH)
 - The time series reflect info about their object
 - Weak: Only past, publicly-available data.
 - Semi-strong: Up-to-now info and the price changes accordingly.
 - Strong: All information public and "insider" info
- Security sector time series follow the strong EMH.
 - No "insider" information
 - All threats are real and have already occurred

Example Scenario

- Process available virus info from WildList
- Create analogy
 - Top/Mid/Bottom-Cap(ital) Company ~ Top/Mid/Bottom-Durable Virus
 - Durability of virus:
 - How many lists has it appeared in? How long for?
- Top-durable virus
 - Known to most security-related applications
- Freshly-introduced virus
 - May cause significant damage in early stages
 - May be easy to confront if not very "intelligent"