
Detecting Insufficient Access Control in
Web Applications

George Noseevich, Andrew Petukhov
{ngo, petand}@lvk.cs.msu.ru

Security research group of the Computer Systems Lab,
Computer Science Department, Lomonosov Moscow State University,

1st SysSec Workshop



Overview

What?
• Detecting broken access control in web applications

How?
• Modified “differential analysis”, black-box

Results
• A method and a tool, AcCoRuTe
• Evaluation on real-word web applications
• Previously-unknown vulnerabilities discovered



Access control testing - challenges

• Web applications provide for virtually unlimited set of
interactions and sequences thereof

• How do we distinguish an authorized worflow from
unauthorized without explicit specifications?

• How do we select a limited subset of actions to check for
access control violations?



Assumption

User should only be allowed to perform
actions listed in his web interface



Basic “differential analysis”

Build web application
sitemaps for each user

Try to access URLs visible to
one user on behalf of the other

Limitations

• Failiure to capture action interdependencies leads to
incomplete sitemaps

• Uncontrolled state changes during sitemap crawling result
in incorrect testing conditions



Possible solution

• Perform “differential analysis” in a series of web
application states

• Preserve state whithin each “differential analysis” round

Questions arise
• How do we select appropriate states?
• How do we tell apart state-changing and state-preserving
requests?



Proposed approach: information gathering step

Browser extension captures operator’s knowledge about web
application business logic

• Roles, users and their credentials
• Administrator, Moderator, User

• State-changing actions
• Post message, Delete forum, Assign forum to moderator

• Action dependencies and cancellations
• to delete a message one must write a message
• after a message is deleted it can no longer be modified



Proposed approach: automated scanning step

Web application scanner performs automated access control
test using gathered information

• Recorded actions are organized
in a use-case graph

• Actions from the graph are
carried out in a specific order

• After each performed action,
“differential analysis” is
performed

• State-changing actions are not
performed during the sitemap
crawling



Alternative method

White-box approach [Felmetsger et al, 2010]:
• Extract “likely invariants” during web application normal
operation using dynamic analysis

• Use model checking to check web application source code
for invariant violations

• Was evaluated on Easy JSP forum web application
(open source message board, approx. 1500 lines of code)
3 vulnerabilities found, 1 false positive, 5 h. running time



Evaluation

• Easy JSP forum: 5 vulnerabilities found and 1 missed, 1
false positive, 1 h running time (incl. 25 minutes of
operator work)

• PyForum: discovered previously-unknown vulnerability
that allows editing arbitrary user profiles, including the
ability to change passwords (confirmed by developer).



Work in progress

Limitations
• Limited (yet) javascript and AJAX support
• Some alerts do not represent real vulnerabilities
• Hidden content is not discovered

Next steps
• Further automate the process by using static analysis to
separate state-changing and state-preserving actions



Questions?


