

A Fast Eavesdropping Attack Against Touchscreens

Federico Maggi, Alberto Volpatto, Simone Gasparini, Giacomo Boracchi, **Stefano Zanero**

Politecnico di Milano

How sensitive data is compromised

Direct attacks

- Well-known in both literature and industry
- Very active research community

• Other types of attacks

- Social engineering attacks
- Side-channel attacks
- Difficult to mitigate (if not through awareness)

Side-channel Attacks

- Less known yet very effective
- Digital side-channels
 - Example: decrypting SSL through wifi LAN sniffing
- Physical-world observation
 - Direct observation
 - Shoulder surfing
 - Indirect observation
 - Sound emanations
 - Reflections
 - Magnetic radiations
 - Desk surface vibrations

Physical-world Observation

Automated Shoulder Surfing

- First attempt of **automatic** shoulder surfing
- Recovery of long texts

Ubiquitous Touchscreen Mobiles

2010 survey on 2,252 US citizens

- 72% use a mobile phone for texting
- 30% use a mobile phone for instant messaging
- 38% use a mobile phone for Web **browsing**
- (1970) touchscreen technology was invented
 - 2010: 5 billion US dollars market
 - 159% market grow rate
 - Q3 2010: 417 million of touchscreen

Automated Shoulder Surfing

- Non-automated
 - not interesting
 - time consuming
- Automated
 - Is it feasible?
 - Mobile context poses several constraints

Mobile Settings Constraints

- Moving target
- Fixed observation point not always feasible
- Very small keyboards
- No visibility of pressed keys
- No visible key occlusions

Touchscreen to the rescue

- Lack of tactile feedback
- Early soft keyboards were hard to use
- UI engineers came up with usable keyboards

Usability vs Security

- Old dilemma
- More secure, less easy to use
- Example: Google's 2-step authentication
 - Very secure
 - Very unusable
 - Wait for the verification code every time you do email
- Apply also in this context
 - Feedback-less touchscreen keyboards
 - hard to type on
 - Feedback-rich keyboard keyboards
 - easy to type on
 - eyes follow the feedback naturally during typing

Our approach

Simple Threat Model

Requirement 1

iPhone-like visual feedback mechanism

Requirement 2

 Template of the target screen known in advance

Requirement 1 is often satisfied

Requirement 2 is very easy to satisfy

SCREEN TEMPLATE

Q. OK. ATI C	11:36	0.3	73%
Carcel	lew Message		Sand
To:			
Co/Boc:			
Subject:			
1			
QWE	RTYU	1	0 P
ASD	FGH	JК	L
🕹 Z X	СVВ	N M	
123 🌐	spazio		invio

KEY TEMPLATES

MAGNIFIED LAYOUT

(screenshot)

(synthetic, hi-res)

(x,y-coordinates)

Outline of the Approach

Phase 1

Screen detection and rectification

Phase 2

Magnified key detection

Phase 3

Keystroke sequence reconstruction

Phase 1

Input

Image depicting the current scene (current frame)

Output

Synthetic image of the rectified, cropped screen

Procedure

- Screen detection
- Screen rectification

Screen Detection

The current frame is searched for the screen template (Requirement 1)

SCREEN TEMPLATE

CURRENT FRAME

MATCHING PATCH

Screen Detection via Template Matching

SURF features

- Edges
- Corners
- Invariant to:
 - Rotation
 - Scale
 - Skew
 - Occlusions
- Homography estimation

Screen Rectification via Homography

CURRENT FRAME

Estimate during screen detection
 Successfull matches improve matches in subsequent frames

RECTIFIED FRAME

Phase 2

Input

Image of the rectified screen

Output

Areas where magnified keys appeared

Procedure

Background subtraction

Pixelwise Background Subtraction

0 1 73% 11:36 ATI C New Message To: Cc/Bcc: Subject: W OP Q E R Y U 1 JK F H S D G L A B N M invio spazio

CURRENT FRAME

SCREEN TEMPLATE

FOREGROUND

Spurious output

HIGHLIGHTED KEY (MAGNIFIED-KEY CANDIDATE)

OTHER FOREGROUND ELEMENTS (NOISE)

FOREGROUND

Phase 3

Input

Magnified-key candidates

Output

Sequence of typed symbols

Procedure

- Approximate neighbors lookup
- Best matching key identification
- Fast pruning
- Key sequence analysis

Approximate Neighbor Lookup

- Known keyboard layout (Requirement 2)
- Centroid identification
- Match centroids with keyboard layout

Known keyboard layout

Centroid identification

Match centroids with layout

Key similarity

Region of interest
Key template (Req. 2)

Fast Pruning

- Computing the key similarity is expensive
- Black-white distribution of the ROI

Key Sequence Analysis

Find maxima of the key similarity

Implementation Details

Phase 1

- C++
- OpenCV

Phase 2-3

- Matlab
- Compiled into C

Threshold estimation

- Confidence interval (mean, variance)
- Video samples collected in "no typing" conditions

DEMO

http://www.youtube.com/watch?v=aPuS8kNI30U

http://www.youtube.com/watch?v=t9BxB3dO0KQ

Experimental Evaluation

- Types of text
 - Context-free
 - Context-sensitive
- 3 attackers, 3 victims
- Goals
 - Precision and speed
 - Resilience to disturbances

Overall evaluation procedure

Typing

- 3 victims are given the input text
- Victims type text on their iPhones

Recording

- A recording camera was used for repeatability
 Attack
 - 3 attackers are provided with the videos
 - Attackers have "infinite" time to analyze videos

Comparison

Automatic attack vs. human attackers

spent chapter foundation identified because first which material notation summarized time spent volume much technical little system reference figured number measurement lorem referring abstract text introductory shown in the we observing request second objective books relationship astute formidable quantile convenient remainder between utilizable tool law resident minutes exemplified the product then temporarily number will per systematic average accumulated south speciality terminal numerous introduce

Context-sensitive text

close your eyes and begin to relax take a deep breath and let it out slowly concentrate on your breathing with each breath you become more relaxed imagine a brilliant white light above you focusing on this light as it flows through your body allow yourself to drift off as you fall deeper and deeper into a more relaxed state of mind now as i

Almost as precise as a human

Hit rate: context-free text $\square \square \square$ Error rate: context-free text $\square \square \square$ context-rich text

Way faster than a human

Decoding speed: context-free text XXX context-rich text XXX

Extreme conditions

Aberration	Phase 1	Phase 2-3	
		h%	ε%
 Permanent occlusion Shake device Shake camera Shake device + camera 	difficult feasible feasible unfeasible	44.44 67.74 96.00 0.00	33.33 8.70 4.00 -

Limitations

Non-magnifying keys

- Space (on iPhone only)
- Layout-switching keys
- Mitigation
 - Device-specific heuristics
 - E.g., on iPhone, exploit color-changing spacebar

Alternative layouts (minor limitation)

Mitigation

- Detect switch
- Loop through different templates during detection

Alternative layouts

iSpy: A Happy Coincidence

- [Raguram, CCS 2011]
- Appeared at the same conference
- Completely different approach
 - Classification-based
 - They require training
- Really, the very same accuracy 97~98%

Conclusions

- Touchscreen mobile devices are widespread
- Shoulder surfing is automatable
- Automatic shoulder surfing is precise too
- Counteract these attacks with privacy screens
- But...

Finger tracking

Challenge

How to detect tapping?

THANKS!

Stefano Zanero stefano.zanero@polimi.it @raistolo

NECST Lab Dipartimento di Elettronica e Informazione Politecnico di Milano

SysSec: A European Network of Excellence in Managing Threats and Vulnerabilities in the Future Internet

What is the impact of attacks?

"... potential (cyber)attacks against network infrastructures may have widespread and devastating consequences on our daily life: no more electricity or water at home, rail and plane accidents, hospitals out of

service"

Viviane Reding,

Vice President European Commission

Government: The Parliament under attack

Transportation: No train signals

Computer Virus Brings Down Train Signals Security InformationWeek - Windows Internet Explorer		_ 7 🛛
🚱 🕞 💌 http://www.informationweek.com/news/security/vulnerabilities/showArticle.jhtml?articleID=13100807	💌 🗟 <table-cell-rows> 🔀 🍉 Live Search</table-cell-rows>	P -
Eile Edit View Favorites Iools Help 🛛 🗙 🎭 Convert - 🔂 Select		
🚖 Favorites 🛛 🚖 🏉 Suggested Sites 🔻 🔊 Web Slice Gallery 👻		
₩ Computer Virus Brings Down Train Signals Security	🏠 🔹 🔝 🝸 🚍 📥 🔹 Page 🗸 Safety 🕶 Tools	• 🕢 • »
Computer Virus Brings Down Train Signals		
The virus infected the computer system at CSX's headquarters, shutting down s dispatching, and other systems for trains throughout the East.	ignaling,	
By Marty Niland, Associated Press Writer InformationWeek August 20, 2003 06:00 PM		
NEW YORK (AP) A computer virus was blamed for bringing down train signaling sys East on Wednesday.	tems throughout the	
The virus infected the computer system at CSX Corp.'s Jacksonville, Fla., headquarters signaling, dispatching, and other systems at about 1:15 a.m. EDT, CSX spokesman Ad said.	s, shutting down Iam Hollingsworth	
"The cause was believed to be a worm virus sim	nilar to those that have	50% • ";;

Transportation: No cars

Energy: No electricity

Defense: fighter planes grounded

P -
ð•
^
~

What about our lives? Are they next?

What's next?

SysSec: managing threats and vulnerabilities for the future Internet a Network of Excellence (2010-2014)

Why?

We need to work towards solutions

We need to collaborate

At a European level

With our international colleagues

Around the world

- Poli. di Milano (IT)
- Vrije Universiteit (NL)
- Institute Eurecom (FR)
- BAS (Bulgaria)
- TU Vienna (Austria)
- Chalmers U (Sweden)
- TUBITAK (Turkey)
- FORTH ICS (Greece)

What is SysSec?

- SysSec proposes a *game-changing* approach to cybersecurity:
- Currently Researchers are mostly reactive:
- they usually track cyberattackers *after* an attack has been launched
- thus, researchers are always one step behind attackers
- SysSec aims to break this vicious cycle
- Researchers should become more *proactive*:
- Anticipate attacks and vulnerabilities
- Predict and prepare for future threats
- Work on defenses before attacks materialize.

SysSe

SysSec Aim and Objectives (I)

Create an active, vibrant, and collaborating **community of Researchers** with

the expertise, capacity, and determination to anticipate and mitigate the emerging threats and vulnerabilities on the Future Internet.

SysSec aims to create a **sense of ``community''** among those researchers,

to mobilize this community,

to consolidate its efforts,

to expand their collaboration internationally, and

become **the single point of reference** for Systems Security research in Europe.

SysSec Aim and Objectives (II)

Advance European Security Research well beyond the state of the art

research efforts are fragmented

SysSec aims to provide a research agenda and

align their research activities with the agenda

make SysSec a leading player in the international arena.

SysSec Aim and Objectives (III)

Create a virtual distributed Center of Excellence in the area of emerging threats and vulnerabilities.

By forming a critical mass of European Researchers and by aligning their activities,

Have the gravitas needed to play a **leading role internationally**, empowered to undertake large-scale, ambitious and high-impact research efforts.

Create a Center of Academic Excellence in the area create an education and training program targeting young researchers and the industry.

lay the foundations for a common graduate degree in the area with emphasis on Systems Security.

SysSec Aim and Objectives (IV)

Maximize the impact of the project by proactive **dissemination** to the appropriate stakeholders.

disseminate its results to international stakeholders so as to form the needed strategic partnerships (with similar projects and organizations overseas) to play a major role in the area.

dissemination within the Member States will

reinforce SysSec's role as a center of excellence and

make SysSec a beacon for a new generation of European Researchers.

Create Partnerships and transfer technology to the European Security Industry.

create a close partnership with Security Industry

facilitate technology transfer wherever possible to further strengthen the European Market.

SysSec: How can you collaborate

Contribute to the research roadmap/agenda Provide feedback on emerging threats

Share your ideas on future security issues

Contribute to our "systems security" University curriculum Contribute homeworks/exams

Contribute/use lab exercises

Teach some of the courses at your University

Share some of your course material

Become an "Associated Partner" of the project