All Your Face Are Belong to Us: Breaking Facebook’s Social Authentication

Jason Polakis, Marco Lancini, Georgios Kontaxis, Federico Maggi, Sotiris Ioannidis, Angelos Keromytis, Stefano Zanero

stefano.zanero@polimi.it
@raistolo

HackCon 2013
Introduction

- Social Networks
 - Massive user base (Facebook: 1 Billion active users)
 - Appealing targets
- Compromised accounts sold in underground markets
- Majority of spamming accounts compromised, not fake [Gao et al., IMC 2010]
- Recent Facebook phishing attacks
 - Use compromised accounts
 - Steal personal info
 - Social engineering
Social Authentication (SA)

- Two-factor authentication scheme
 - 2nd factor: something user knows
 - Difficult for the attacker to learn

- More user-friendly
 - No need for physical tokens
 - Easy for people to recognize their friends
 - People accustomed to tagging friends (creating the labeled dataset for Facebook)
Social Authentication (SA)

- 7 challenges
- 3 photos per challenge
- 6 possible answers
- User has to correctly answer 5/7 challenges
Motivation

“Can adversaries break SA in an automated manner?”
Triggering Social Authentication

- When log-in considered suspicious
 - From geo-location never seen before
 - From device never seen before

- Requirements
 - Friend list: 50 Friends
 - Gradually increased # of friends in dummy accounts
 - Tagged photos
 - Friends must be tagged in adequate # of photos
SA Photo Selection

“Are photos randomly selected?”

- 2,667 SA photos from real SA tests checked
 - 84% containing faces in manual inspection
 - 80% in automatic inspection by software

- 3,486 random Facebook photos checked
 - 69% contained faces in manual inspection

- Face detection procedures used for selecting photos with faces
SA shortcomings

- Number of friends influences usability
 - Difficult for users with many friends
 - Dunbar’s number

- Content of photos
 - May not contain faces, or even the user tagged
 - Initial user feedback expressed frustration

- Current implementation by Facebook
 - Users can bypass SA by entering date of birth
 - Trivial for attackers to obtain
Threat model

- SA considered safe against adversaries that
 - Have stolen credentials
 - Are *strangers* (not members of the victim’s social circle)

- Not safe against friends or family
- Or any tightly connected network (e.g. University) [Kim et al., FC ‘12]

- We demonstrate SA not safe even against strangers
 - Publicly available data
 - Face recognition software
Attack Scenarios

- Casual Attacker
 - Collects publicly available data

- Determined Attacker
 - Penetrates victim’s social circle
 - Befriends victim’s friends
 - Employs fake accounts
 - Different characteristics appeal to different demographics [Irani, DIMVA ’11]
 - Collects as much private data as possible
1. Crawling Friend List (offline)
 - Crawler retrieves names and UIDs of target’s friends
2. Issuing Friend Requests (offline, optional)
 - Can use dummy accounts
3. Photo Collection/Modeling (offline)
 1. Photo collection
 2. Face extraction and Tag matching
 3. Facial Modeling
 4. Name Lookup
Face recognition

- Custom solution
 - Based on OpenCV library
 + Versatility in parameter tuning
 + Offline
 - Not as accurate

- Cloud Service
 - Face.com (subsequently acquired by Facebook)
 - Exposes API to developers
 + Superior accuracy
 - API rate limiting
Experimental Evaluation

- We collect data as *casual attackers* (publicly available data)
 - We have not compromised or damaged any user accounts (as if I'd ever tell... :-)
- Determined attacker experiment
 - Through simulation
 - Custom face recognition software (flexible)
- Casual attacker experiment
 - Using face.com (accurate)
Dataset

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIDs</td>
<td>236,752</td>
<td>167,359</td>
<td>69,393</td>
</tr>
<tr>
<td>Not tagged</td>
<td>116,164</td>
<td>73,003</td>
<td>43,161</td>
</tr>
<tr>
<td>Tagged</td>
<td>120,588</td>
<td>94,356</td>
<td>26,232</td>
</tr>
<tr>
<td>Mean tags per UID:</td>
<td>19.39</td>
<td></td>
<td>10.58</td>
</tr>
<tr>
<td>Tags(^9)</td>
<td>2,107,032</td>
<td>1,829,485</td>
<td>277,547</td>
</tr>
<tr>
<td>Photos</td>
<td>16,141,426</td>
<td>16,141,426</td>
<td>(not collected)</td>
</tr>
<tr>
<td>Albums</td>
<td>805,930</td>
<td>805,930</td>
<td>(not collected)</td>
</tr>
</tbody>
</table>
Breaking SA: determined attacker

- Attacker has access to “all the photos”
- Selected users with enough photos as friends
- Extract faces from photos

- Train our system with $K = 10, 20, \ldots, 120$ faces per friend
- Simulated SA tests from public photos
- Generate 30 simulated SA tests from photos not used for training
Breaking SA: determined attacker

Successfully passed pages as a function of the training set.

Time required to lookup photos as a function of solved pages.
Breaking SA: casual attacker

- Use our dummy accounts as “victims”
- Automated SA triggering through ToR
- Collect snapshot of 127 real SA tests
 - Manually answered the CAPTCHA
- Use face.com to break the tests (challenging conditions)
- ~44 seconds to solve a complete test
Breaking SA: casual attacker

- Manual verification
 - 22% solved
 - 56% need 1-2 guesses

- Failed photos
 - 25% no face in photo
 - 50% unrecogn. face
 - 25% no model available
Attack Surface Estimation

Comromised accounts
- Public friend list
 - Friend list reachable
 - Friend list reachability
 - Public friend list
 - Accept friend request
 - Private friend list
 - 47% (casual attacker)
 - 84% (determined attacker)
 - Refuse friend request
 - Private friend list
 - 79% (casual attacker)
 - 29% (determined attacker)
 - Public photos
 - Photos reachable
 - Photos reachability
 - Public photos
 - Accept friend request
 - Private photos
 - 70% (casual attacker)
 - 77% (determined attacker)
 - Refuse friend request
 - Private photos
 - 70% (casual attacker)
 - 77% (determined attacker)
 - Photos reachability
 - Tags reachable
 - Tags reachability
 - Tags reachable
 - Reached by a casual attacker
 - 42% Tags reachable
 - Tags found on public photos of friends
 - 100% Tags reachable
 - Tags found on public photos of friends
 - 100% Tags reachable
 - Refuse friend request
 - Tags of "private" UIDs
 - Access only to publicly-available information or private tags that appears on public photos.
 - Access publicly-available information and issues friend requests to (friends of) victims.

- Dead branch
- Casual attacker
- Determined attacker
Remediation Measures

- Facebook features (opt-in)
 - Login Approval (SMS based) – traditional 2 factor auth.

- Slowing down the attacker
 - Remove suggestions
 - Reduce time window

- Revisit SA
 - Select photos that contain faces software can’t identify
Facebook’s Response

- Acknowledged our results
- “Deployed SA to raise the bar in large-scale phishing attacks”
- “Not designed for small-scale or targeted attacks”
- “Users can enable Login Approval”
 - How many have actually done so?
Discussion

- Eurograbber malware [1]
 - Targets EU banks
 - Infects user’s computer
 - Tricks user into installing smartphone malware via bogus messages and social engineering
 - Intercepts 2nd factor token sent to user’s device

- What are the implications of using the same device as the 2nd factor, and for browsing?

- SA security compared to traditional two-factor with smartphones?

Conclusions

- Designed and implemented an automated SA breaking system
- Demonstrated the weaknesses of SA
- Publicly-available data sufficient for attackers
- Cloud services can be utilized effectively

- Facebook should reconsider its threat model
- Need to revisit the SA approach
Thank you!

Most of this work was funded by the EC under FP7 project SysSec