
Behavior-based Methods for Automated,
Scalable Malware Analysis

Stefano Zanero, PhD

Assistant Professor, Politecnico di Milano

Stefano Zanero

Knowing the enemy = key for success

“He will win who knows when to fight and when not
to fight... He will win who, prepared himself, waits to
take the enemy unprepared. Hence the saying: If
you know the enemy and know yourself, you need
not fear the result of a hundred battles. If you know
yourself but not the enemy, for every victory gained
you will also suffer a defeat. If you know neither the
enemy nor yourself, you will succumb in every
battle.” [Sun-Tsu]

Stefano Zanero

The malware problem

Malware at the root of many internet security problems
 Tens of thousands of new samples each day
 developed with creation kits = rapid evolution of

multiple variations
 Underground economy fuelling malware creation
 1990s: explosive diffusion of identical malware
 2010s: stealthy diffusion of variants of malware

designed to be difficult to identify, trace and analyze

Stefano Zanero

Antivirus detection ratio...

Names censored to protect the culprits...
Thanks to VirusTotal (www.virustotal.com)

Stefano Zanero

Stefano Zanero

The analysis issue

Analysts are way too few, code is way too much

Need better ways to
 Automatically analyze/reverse engineer malware
 Automatically classify/cluster malware, e.g. in families

For both, we have two approaches with symmetric issues

Stefano Zanero

Static vs. dynamic approaches

Static approaches

+ Complete analysis

- Difficult to extract semantics

- Obfuscation / packing

Dynamic approaches

- “Dormant” code

+ Easy to see “behaviors”

+ Malware unpacks itself

Stefano Zanero

Our Approach

Turn weakness into strength, and strength into weakness, as
Sun-Tzu would suggest: leverage code reuse between
malware samples to our advantage

 Automatically generate semantic-aware models of
code implementing a given malicious behavior

 Use these models to statically detect the malicious
functionality in samples that do not perform that
behavior during dynamic analysis

 Use a variation of this technique to study malware
evolution over time

Stefano Zanero

REANIMATOR

Run malware in monitored environment and detect
a malicious behavior (phenotype)

Identify and model the code responsible for the
malicious behavior (genotype model)

Match genotype model against other unpacked
binaries

Stefano Zanero

REANIMATOR

Stefano Zanero

Dynamic Behavior Identification

Stefano Zanero

Dynamic Behavior Identification

Run malware in instrumented sandbox
 Anubis (anubis.iseclab.org)

Dynamically detect a behavior B (phenotype)

Map B to the set R
B
 of system/API call instances

responsible for it

R
B
 is the output of the behavior identification phase

Stefano Zanero

Behavior Detection Examples

spam: send SMTP traffic on port 25
 network level detection

sniff: open promiscuous mode socket
 system call level detection

rpcbind: attempt remote exploit against a specific vulnerability
 network level detection, with snort signature

drop: drop and execute a binary
 system call level detection, using data flow information

...

Stefano Zanero

Extracting Genotype Models

Stefano Zanero

Extracting Genotype Models: Goals

Identified genotype should be precise and complete
Complete: include all of the code implementing B
Precise: do not include code that is not specific to B
(utility functions,..)

We proceed by slicing the code, then filtering it to
remove support code, and germinating to complete it

Stefano Zanero

Slicing

Start from relevant calls R
B

Include into slice instructionsϕ involved in:
 preparing input for calls in R

B

• follow data flow dependencies backwards from call
inputs

 processing the outputs of calls in R
B

• follow data flow forward from call outputs

We do not consider control-flow dependencies
 would lead to including too much code (taint explosion

problem)

Stefano Zanero

Filtering

The slice is not preciseϕ

General purpose utility functions are frequently included
(i.e: string processing)

 may be from statically linked libraries (i.e: libc)
 genotype model would match against any binary that links to

the same library

Backwards slicing goes too far back: initialization and
even unpacking routines are often included

 genotype model would match against any malware packed
with the same packer

Stefano Zanero

Filtering Techniques

Exclusive instructions:
 set of instructions that manipulate tainted data every

time they are executed
 utility functions are likely to be also invoked on

untainted data

Discard whitelisted code:
 whitelist obtained from other tasks or execution of the

same sample, that do not perform B
 could also use foreign whitelist

• i.e: including common libraries and unpacking routines

Stefano Zanero

Germination

The slice is not completeϕ

Auxiliary instructions are not included
 loop and stack operations, pointer arithmetic, etc

Add instructions that cannot be executed without
executing at least one instruction in ϕ

Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)

Stefano Zanero

Finding Dormant Functionality

Stefano Zanero

Finding Dormant Functionality

Genotype is a set of instructions

Genotype model is its colored control flow graph (CFG)
 nodes colored based on instruction classes

2 models match if they share at least one K-Node subgraph (K=10)

Use techniques by Kruegel et al. to efficiently match a binary against
a set of genotype models

We use Anubis as a generic unpacker

Stefano Zanero

Evaluation

Are the results accurate?
 when REANIMATOR detects a match, is there really the dormant

behavior?
 how reliably does REANIMATOR detect dormant behavior in the

face of recompilation or modification of the source code?

Are the results insightful?
 does REANIMATOR reveal behavior we would not see in dynamic

analysis?

Stefano Zanero

Accuracy

To test accuracy and robustness of our system we need a
ground truth

Dataset of 208 malware samples with source code
 thanks to Jon Oberheide and Michael Bailey from University of

Michigan

Extract 6 genotype models from 1 sample

Match against remaining 207 binaries

Stefano Zanero

Accuracy

Even with source, manually verifying code similarity is time-
consuming

Use a source code plagiarism detection tool
 MOSS

We feed MOSS the source code corresponding to each of the 6
behaviors

 match it against the other 207 sources
 MOSS returns a similarity score in percentage

We expect REANIMATOR to match in cases where MOSS returns
high similarity scores

Stefano Zanero

MOSS Comparison

Stefano Zanero

MOSS Comparison

Potential False Negatives

Potential False Positives

Stefano Zanero

Accuracy Results

We manually investigated the potential false positives and
false negatives

Low false negative rate (~1.5%)
 mostly small genotypes

No false positives
 genotype model match always corresponds to

presence of code implementing the behavior

Also no false positives against dataset of ~2000 benign
binaries
 binaries in system32 on a windows install

Stefano Zanero

Robustness

Robustness results when re-compiling same
source
 Robust against different compilation options (<7%

false negatives)
 Robust against different compiler versions
 Not robust against completely different compiler

(>80% false negatives)
 Some robustness to malware metamorphism was

demonstrated by Kruegel in a previous work

Stefano Zanero

In-the-Wild Detection

10 genotype models extracted from 4 binaries

4 datasets
 irc_bots: 10238 IRC bots
 packed_bots: 4523 packed IRC bots
 pushdo: 77 pushdo binaries (dropper, typically drops spam

engine cutwail)
 allaple: 64 allaple binaries (network worm)

Reanimator reveals a lot of functionality not observed during
dynamic analysis

Stefano Zanero

In-the-Wild Detection

B: Behavior observed in dynamic analysis.
S,D: Functionality detected by Reanimator

Stefano Zanero

Beagle

 Tracking of malware evolution over time
 Let malware update and at each step:

• Run malware in monitored environment to see behaviors
• Identify the code changes responsible for malicious

behavior changes
 Use the same techniques of REANIMATOR for

identifying and labeling behaviors, and evolutions of
binary code

Stefano Zanero

Beagle: overview

Stefano Zanero

Beagle: how do we define a behavior

 We make use of an Anubis-like sandbox to automatically
analyze system level activity

 We extract automatically graphs of connected actions
that we call (unlabeled) behaviors

 We then label (some of) them manually, and can
recognize with simple rules them across different
samples

 This is similar to the REANIMATOR behavior signatures
 Opposed to REANIMATOR we tag code with behavior at

a function-level granularity

Stefano Zanero

Beagle: our dataset

Stefano Zanero

Beagle: some global results

Stefano Zanero

Beagle: breakdown of changes on behaviors

Gamarue family

Distribution of
similarity

Bold line = median
Box = quantiles
(0,25,75,100)
Circle = outlier

Stefano Zanero

Beagle: some of the insights

 Changes and evolution
• Some families are much more actively developed than others
• Also we can pinpoint changes over individual behaviors,

sometimes across the collection
• In some cases, overall development appears constant/low, but

we can disaggregate it to significant changes
 Effort

• We have blocks in ASM, not LoC in source, but we can do
some estimate

• We estimate that avg added code in Zeus over each variation
is 140–280 LoC, with peaks up to 9,000

• Roughly holds for other families but we are less certain
• Significant effort of development in malware

Stefano Zanero

Next step: automatic extraction of malicious
behaviors from large datasets of malware

 Reanimator and Beagle rely on manually-identified relevant
behaviors

• This is not a dramatic requirement as we saw
• Still, tedious manual step we may wish to avoid
• Biased from analyst's previous perspective, not receptive to

novelty
 We are working to demonstrate that we can:

• Automatically extract relevant “sets-of-calls” that might be
behaviors (done: grouped call by dataflow dependency)

• Match this dictionary of unlabeled behaviors across different
variants (in fieri)

• Try to associate as much semantic information as possible to
these “emerging” behaviors before presenting them to human
analysts (todo)

Stefano Zanero

Next step: Classifying malware by structural
and behavioral features

Several works perform either:
 Structural clustering based on code features (e.g. works by H. Flake,

Ero Carrera, and others)
 Behavioral clustering based on program execution traces (e.g. works

by P. M. Comparetti, C. Kruegel, and others)

Our next research: using the same backward-forward
techniques we used in the previous 2 works to map these
two clustering approaches to each other. This will improve
the quality of the families, help cluster correctly malware
which is obfuscated or which has dormant behaviors

Stefano Zanero

Conclusions

 Structural analysis alone is too time and brain
consuming

 Dynamic analysis alone has too many blind points
 We can combine both to obtain:

• Dormant code analysis and tagging
• Evolution tracking
• Triage of new samples
• (hopefully) better means of classifying specimens in families

 Much work needs to be done in this area
• Automatic identification of behaviors
• Using these insights to automatically generate a sensible

classification of malware into families

Stefano Zanero

Thanks for your attention!

stefano.zanero@polimi.it
@raistolo

Most of the work presented was/is joint work with:

UCSB – Christopher Kruegel

Lastline – Paolo Milani Comparetti

Northeastern University – Engin Kirda

Technical University of Vienna – Martina Lindorfer

Politecnico di Milano - Federico Maggi, Alessandro di Federico,
Guido Salvaneschi, Mario Polino, Andrea Scorti

Of course, errors and opinions are mine solely :-)

Research partially funded by the
European Commission under FP7

project SysSec

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

