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Knowing the enemy = key for success

“He will win who knows when to fight and when not 
to fight... He will win who, prepared himself, waits to 
take the enemy unprepared. Hence the saying: If 
you know the enemy and know yourself, you need 
not fear the result of a hundred battles. If you know 
yourself but not the enemy, for every victory gained 
you will also suffer a defeat. If you know neither the 
enemy nor yourself, you will succumb in every 
battle.” [Sun-Tsu]
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The malware problem

Malware at the root of many internet security problems
 Tens of thousands of new samples each day
 developed with creation kits = rapid evolution of 

multiple variations
 Underground economy fuelling malware creation
 1990s: explosive diffusion of identical malware
 2010s: stealthy diffusion of variants of malware 

designed to be difficult to identify, trace and analyze
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Antivirus detection ratio...

Names censored to protect the culprits...
Thanks to VirusTotal (www.virustotal.com)
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The analysis issue

Analysts are way too few, code is way too much

Need better ways to
 Automatically analyze/reverse engineer malware
 Automatically classify/cluster malware, e.g. in families

For both, we have two approaches with symmetric issues
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Static vs. dynamic approaches

Static approaches

+ Complete analysis

- Difficult to extract semantics

- Obfuscation / packing

Dynamic approaches

- “Dormant” code

+ Easy to see “behaviors”

+ Malware unpacks itself
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Our Approach

Turn weakness into strength, and strength into weakness, as 
Sun-Tzu would suggest: leverage code reuse between 
malware samples to our advantage

 Automatically generate semantic-aware models of 
code implementing a given malicious behavior

 Use these models to statically detect the malicious 
functionality in samples that do not perform that 
behavior during dynamic analysis

 Use a variation of this technique to study malware 
evolution over time
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REANIMATOR

Run malware in monitored environment and detect 
a malicious behavior (phenotype)

Identify and model the code responsible for the 
malicious behavior  (genotype model)

Match genotype model against other unpacked 
binaries
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REANIMATOR
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Dynamic Behavior Identification
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Dynamic Behavior Identification

Run malware in instrumented sandbox 
 Anubis (anubis.iseclab.org)

Dynamically detect a behavior B (phenotype)

Map B to the set R
B
 of system/API call instances 

responsible for it

R
B
 is the output of the behavior identification phase
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Behavior Detection Examples

spam: send SMTP traffic on port 25 
 network level detection

sniff: open promiscuous mode socket
 system call level detection

rpcbind: attempt remote exploit against a specific vulnerability
 network level detection, with snort signature

drop: drop and execute a binary 
 system call level detection, using data flow information

...
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Extracting Genotype Models
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Extracting Genotype Models: Goals

Identified genotype should be precise and complete
Complete: include all of the code implementing B 
Precise: do not include code that is not specific to B 
(utility functions,..)

We proceed by slicing the code, then filtering it to 
remove support code, and germinating to complete it
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Slicing

Start from relevant calls R
B 

Include into slice  instructionsϕ  involved in:
 preparing input for calls in R

B

• follow data flow dependencies backwards from call 
inputs

 processing the outputs of calls in R
B

• follow data flow forward from call outputs

We do not consider control-flow dependencies
 would lead to including too much code (taint explosion 

problem)
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Filtering

The slice  is not preciseϕ

General purpose utility functions are frequently included 
(i.e: string processing)

 may be from statically linked libraries (i.e: libc) 
 genotype model would match against any binary that links to 

the same library

Backwards slicing goes too far back: initialization and 
even unpacking routines are often included

 genotype model would match against any malware packed 
with the same packer
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Filtering Techniques

Exclusive instructions: 
 set of instructions that manipulate tainted data every 

time they are executed
 utility functions are likely to be also invoked on 

untainted data

Discard whitelisted code:
 whitelist obtained from other tasks or execution of the 

same sample, that do not perform B
 could also use foreign whitelist 

• i.e: including common libraries and unpacking routines
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Germination

The slice  is not completeϕ

Auxiliary instructions are not included
 loop and stack operations, pointer arithmetic, etc

Add instructions that cannot be executed without 
executing at least one instruction in ϕ

Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)
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Finding Dormant Functionality
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Finding Dormant Functionality

Genotype is a set of instructions

Genotype model is its colored control flow graph (CFG)
 nodes colored based on instruction classes

2 models match if they share at least one K-Node subgraph (K=10)

Use techniques by Kruegel et al. to efficiently match a binary against 
a set of genotype models

We use Anubis as a generic unpacker
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Evaluation

Are the results accurate?
 when REANIMATOR detects a match, is there really the dormant 

behavior?
 how reliably does REANIMATOR detect dormant behavior in the 

face of recompilation or modification of the source code?

Are the results insightful?
 does REANIMATOR reveal behavior we would not see in dynamic 

analysis?
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Accuracy

To test accuracy and robustness of our system we need a 
ground truth

Dataset of 208 malware samples with source code
 thanks to Jon Oberheide and Michael Bailey from University of 

Michigan

Extract 6 genotype models from 1 sample

Match against remaining 207 binaries
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Accuracy

Even with source, manually verifying code similarity is time-
consuming

Use a source code plagiarism detection tool
 MOSS

We feed MOSS the source code corresponding to each of the 6 
behaviors

 match it against the other 207 sources
 MOSS returns a similarity score in percentage

We expect REANIMATOR to match in cases where MOSS returns 
high similarity scores
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MOSS Comparison
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MOSS Comparison

Potential False Negatives

Potential False Positives
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Accuracy Results

We manually investigated the potential false positives and 
false negatives

Low false negative rate (~1.5%)
 mostly small genotypes

No false positives
 genotype model match always corresponds to 

presence of code implementing the behavior

Also no false positives against dataset of ~2000 benign 
binaries
 binaries in system32 on a windows install
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Robustness

Robustness results when re-compiling same 
source
 Robust against different compilation options (<7% 

false negatives)
 Robust against different compiler versions
 Not robust against completely different compiler 

(>80% false negatives)
 Some robustness to malware metamorphism was 

demonstrated by Kruegel in a previous work
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In-the-Wild Detection

10 genotype models extracted from 4 binaries

4 datasets
 irc_bots: 10238 IRC bots
 packed_bots: 4523 packed IRC bots
 pushdo: 77 pushdo binaries (dropper, typically drops spam 

engine cutwail)
 allaple: 64 allaple binaries (network worm)

Reanimator reveals a lot of functionality not observed during 
dynamic analysis
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In-the-Wild Detection

B: Behavior observed in dynamic analysis.    
S,D: Functionality detected by Reanimator
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Beagle

 Tracking of malware evolution over time
 Let malware update and at each step:

• Run malware in monitored environment to see behaviors 
• Identify the code changes responsible for malicious 

behavior changes
 Use the same techniques of REANIMATOR for 

identifying and labeling behaviors, and evolutions of 
binary code
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Beagle: overview
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Beagle: how do we define a behavior 

 We make use of an Anubis-like sandbox to automatically 
analyze system level activity

 We extract automatically graphs of connected actions 
that we call (unlabeled) behaviors

 We then label (some of) them manually, and can 
recognize with simple rules them across different 
samples

 This is similar to the REANIMATOR behavior signatures
 Opposed to REANIMATOR we tag code with behavior at 

a function-level granularity
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Beagle: our dataset
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Beagle: some global results
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Beagle: breakdown of changes on behaviors

Gamarue family

Distribution of 
similarity

Bold line = median
Box = quantiles
(0,25,75,100)
Circle = outlier
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Beagle: some of the insights

 Changes and evolution
• Some families are much more actively developed than others
• Also we can pinpoint changes over individual behaviors, 

sometimes across the collection
• In some cases, overall development appears constant/low, but 

we can disaggregate it to significant changes
 Effort

• We have blocks in ASM, not LoC in source, but we can do 
some estimate

• We estimate that avg added code in Zeus over each variation 
is 140–280 LoC, with peaks up to 9,000

• Roughly holds for other families but we are less certain
• Significant effort of development in malware
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Next step: automatic extraction of malicious 
behaviors from large datasets of malware

 Reanimator and Beagle rely on manually-identified relevant 
behaviors

• This is not a dramatic requirement as we saw
• Still, tedious manual step we may wish to avoid
• Biased from analyst's previous perspective, not receptive to 

novelty
 We are working to demonstrate that we can:

• Automatically extract relevant “sets-of-calls” that might be 
behaviors (done: grouped call by dataflow dependency)

• Match this dictionary of unlabeled behaviors across different 
variants (in fieri)

• Try to associate as much semantic information as possible to 
these “emerging” behaviors before presenting them to human 
analysts (todo)
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Next step: Classifying malware by structural 
and behavioral features

Several works perform either:
 Structural clustering based on code features (e.g. works by H. Flake, 

Ero Carrera, and others)
 Behavioral clustering based on program execution traces (e.g. works 

by P. M. Comparetti, C. Kruegel, and others)

Our next research: using the same backward-forward 
techniques we used in the previous 2 works to map these 
two clustering approaches to each other. This will improve 
the quality of the families, help cluster correctly malware 
which is obfuscated or which has dormant behaviors



Stefano Zanero

Conclusions

 Structural analysis alone is too time and brain 
consuming

 Dynamic analysis alone has too many blind points
 We can combine both to obtain:

• Dormant code analysis and tagging
• Evolution tracking
• Triage of new samples
• (hopefully) better means of classifying specimens in families

 Much work needs to be done in this area
• Automatic identification of behaviors
• Using these insights to automatically generate a sensible 

classification of malware into families
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Thanks for your attention!

stefano.zanero@polimi.it
@raistolo

Most of the work presented was/is joint work with:

UCSB – Christopher Kruegel

Lastline – Paolo Milani Comparetti

Northeastern University – Engin Kirda

Technical University of Vienna – Martina Lindorfer

Politecnico di Milano - Federico Maggi, Alessandro di Federico, 
Guido Salvaneschi, Mario Polino, Andrea Scorti

Of course, errors and opinions are mine solely :-)

Research partially funded by the 
European Commission under FP7 

project SysSec
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