Tracking and Characterizing Botnets Using Automatically Generated Domains

Stevens

November 19th, 2013

Stefano Zanero

Politecnico di Milano, Italy @raistolo, stefano.zanero@polimi.it

Federico Maggi, Politecnico di Milano, Italy Lorenzo Cavallaro, Royal Holloway, University of London, UK Stefano Schiavoni, Politecnico di Milano, Italy and Google, UK

POLITECNICO DI MILANO

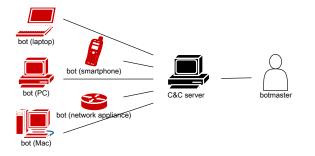
State of the Art

System Description

System Evaluation

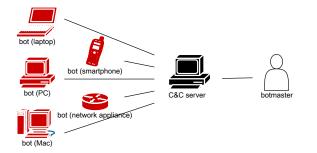
Conclusions

Introduction


Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

Introduction •••••	State of the Art	System Description	System Evaluation	Conclusions
Botnet: Definition				


Introduction •ooooooooooooooooo	State of the Art	System Description	System Evaluation	Conclusions
Botnet: Defin	ition			

Network of **malware-infected devices** under the control of an external entity.

Introduction •000000000000000000000000000000000000	State of the Art	System Description	System Evaluation	Conclusions
Botnet: Defin	nition			

Network of **malware-infected devices** under the control of an external entity.

Compromised devices are employed for **malicious purposes**: information harvesting: login credentials, credit card numbers, distributed computations: spamming, DDOS attacks.

Stefano Zanero

 State of the Art

System Description

System Evaluation

Conclusions

Diffusion of Botnets

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

Introduction 0●000000000000000	State of the Art	System Description	System Evaluation	Conclusions
Diffusion of B	Botnets			

We study the phenomeon because it is **largely widespread** and **highly lucrative**.

Diffusion of Botnets

We study the phenomeon because it is **largely widespread** and **highly lucrative**.

Three examples:

Flashback: year 2012, 600K compromised Macs, credentials stealing

- Grum: from 2008 to 2012, **840K** compromised devices, **40bln/mo** spam emails
- TDL-4: from 2011, **4,5M** victims in the first 3 months, known as *"indestructible"*.

State of the Art

System Description

System Evaluation

Conclusions

Command&Control Channel

Introduction State of the Art System Description System Evaluation Conclusions

It is the channel employed for bot-botmaster communications.

Introduction State of the Art System Description System Evaluation Conclusions coordinate Control Channel

It is the channel employed for bot-botmaster communications.

It is logically bidirectional:

botmaster \rightarrow bot: commands to execute, attacks to launch, bot \rightarrow botmaster: harvested information, feedbacks.

State of the Art

System Description

System Evaluation

Conclusions

Single Point of Failure

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

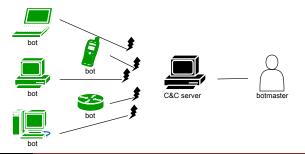
Introduction 000000000000000000000000000000000000	State of the Art 00000000	System Description	System Evaluation	Conclusions
Single Point	of Failure			

If bots cannot communicate with their master, they are **innocuous** and **do no produce profit**.

Introduction 000000000000000	State of the Art	System Description	System Evaluation	Conclusions
Single Point o	of Failure			

If bots cannot communicate with their master, they are **innocuous** and **do no produce profit**.

The C&C channel is single point of failure of the whole botnet.


Introduction 000000000000000000000000000000000000	State of the Art	System Description	System Evaluation	Conclusions
Cinala Daint	f Eailura			

Single Point of Failure

If bots cannot communicate with their master, they are **innocuous** and **do no produce profit**.

The C&C channel is single point of failure of the whole botnet.

Security **defenders strive to disable C&C channels** as means to disable botnets without sanitizing the infected machines.

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

C&C Channels Security

 State of the Art

System Description

System Evaluation

Conclusions

C&C Channels Security

Botnet architects need to buid *sinkholing-proof* C&C infrastructures.

System Description

System Evaluation

Conclusions

C&C Channels Security

Botnet architects need to buid *sinkholing-proof* C&C infrastructures.

No perfect solution exists, but sinkholing can be made **hard** or **antieconomic**.

System Description

System Evaluation

Conclusions

C&C Channels Security

Botnet architects need to buid *sinkholing-proof* C&C infrastructures.

No perfect solution exists, but sinkholing can be made **hard** or **antieconomic**.

Employing **P2P** architectures helps, but these are difficult to manage and provide little guarantees.

System Description

System Evaluation

Conclusions

C&C Channels Security

Botnet architects need to buid *sinkholing-proof* C&C infrastructures.

No perfect solution exists, but sinkholing can be made **hard** or **antieconomic**.

Employing **P2P architectures** helps, but these are difficult to manage and provide little guarantees.

Client-server C&C infrastructures can be effective if a **strong** rallying mechanism is employed.

State of the Art

System Description

System Evaluation

Conclusions

Rallying Mechanisms

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

Rallying Mechanism: Definition

Introduction State of the Art System Description System Evaluation Conclusions

Rallying Mechanism: Definition

The process with which a bot looks up for a **rendezvous point** with its master, before starting the actual communication.

Rallying Mechanism: Definition

The process with which a bot looks up for a **rendezvous point** with its master, before starting the actual communication.

The rendezvous point can be:

- an IP address,
- a domain address.

Rallying Mechanism: Definition

The process with which a bot looks up for a **rendezvous point** with its master, before starting the actual communication.

The rendezvous point can be:

- an IP address,
- a domain address.

Many mechanisms exist, with different security properties.

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded IP: Functioning

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded IP: Functioning

The bot knows the address of its botmaster.

Introduction System Description State of the Art System Evaluation Conclusions

Hardcoded IP: Functioning

The bot knows the address of its botmaster.

Actually, the bot can have a list of addresses.

The bot knows the address of its botmaster.

Actually, the bot can have a list of addresses.

Moreover, it can be instructed to learn new rendezvous addresses when necessary, with a migration-by-delegation.

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded IP: Problems

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded IP: Problems

The rendezvous IP is written in the malware code: it can be leaked through reverse engineering.

Hardcoded IP: Problems

The rendezvous IP is written in the malware code: it can be leaked through reverse engineering.

If we sinkhole that address:

- the bots cannot reach their master,
- the bots are left without a backup plan.

Hardcoded IP: Problems

The rendezvous IP is written in the malware code: it can be leaked through reverse engineering.

If we sinkhole that address:

- the bots cannot reach their master,
- the bots are left without a backup plan.

A precise defensive action would disable the whole botnet.

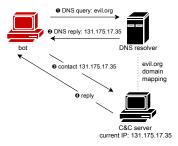
State of the Art

System Description

System Evaluation

Conclusions

Hardcoded Domain: Functioning


System Description

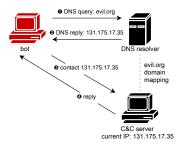
System Evaluation

Conclusions

Hardcoded Domain: Functioning

The bot resolves a domain evil.org and discovers the IP address of the C&C server.

System Description


System Evaluation

Conclusions

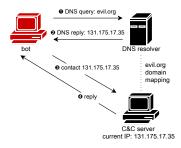
Hardcoded Domain: Functioning

The bot resolves a domain evil.org and discovers the IP address of the C&C server.

The resulting architecture is extremely more flexible.

System Description

System Evaluation


Conclusions

Hardcoded Domain: Functioning

The bot resolves a domain evil.org and discovers the IP address of the C&C server.

The resulting architecture is extremely more flexible.

There is no more vulnerability to IP sinkholing.

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded Domain: Problems

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded Domain: Problems

But actually, we just moved the single point of failure: Now it is the domain evil.org.

State of the Art

System Description

System Evaluation

Conclusions

Hardcoded Domain: Problems

But actually, we just moved the single point of failure: Now it is the domain evil.org.

Nevertheless, sinkholing a domain is much harder than sinkholing an IP address [Jiang et al. 2012].

Introduction	State of the Art	System Description	System Evaluation	Conclusions
General Issues	5			

Introduction	State of the Art	System Description	System Evaluation	Conclusions	
General Issues					

Introduction	State of the Art	System Description	System Evaluation	Conclusions
General Issues	5			

• the rendezvous coordinates can be leaked by the malware binary through reverse engineering;

- the rendezvous coordinates can be leaked by the malware binary through reverse engineering;
- 2 a rendezvous point change needs an explicit agreement.

- the rendezvous coordinates can be leaked by the malware binary through reverse engineering;
- 2 a rendezvous point change needs an explicit agreement.

The mechanism of **domain generation algorithms (DGAs)** targets and solves these issues.

State of the Art

System Description

System Evaluation

Conclusions

Domain Generation Algorithms

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

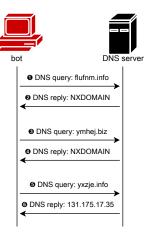
System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Functioning

State of the Art


System Description

System Evaluation

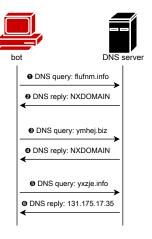
Conclusions

Domain Generation Algorithms: Functioning

Every day the bots generate a **long list of pseudo-random domains**, with an unpredictable seed (e.g., Twitter TT).

State of the Art

System Description


System Evaluation

Conclusions

Domain Generation Algorithms: Functioning

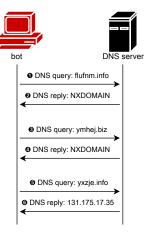
Every day the bots generate a **long list of pseudo-random domains**, with an unpredictable seed (e.g., Twitter TT).

The botmaster registers one of them.

State of the Art

System Description

System Evaluation


Conclusions

Domain Generation Algorithms: Functioning

Every day the bots generate a **long list of pseudo-random domains**, with an unpredictable seed (e.g., Twitter TT).

The botmaster registers one of them.

When the bots find it, **they find the ren-dezvous point**.

State of the Art

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Properties

State of the Art

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Properties

Malware code is agnostic: reverse engineering it is useless.

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Properties

Malware code is **agnostic**: reverse engineering it is useless.

There is an **asymmetry in the costs and efforts**: **botmaster**: needs to register **one domain** to talk to his bots, **defender**: needs to register all the **domain pool**, to avoid it.

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Properties

Malware code is **agnostic**: reverse engineering it is useless.

There is an **asymmetry in the costs and efforts**: **botmaster**: needs to register **one domain** to talk to his bots, **defender**: needs to register all the **domain pool**, to avoid it.

Migrations of C&C servers **do not need explicit agreement**.

State of the Art

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Defense

State of the Art

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Defense

The DGA mechanism **does not allow proactive defense strategies** and does not have obvious vulnerabilities.

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Defense

The DGA mechanism **does not allow proactive defense strategies** and does not have obvious vulnerabilities.

It is necessary to study defensive solutions that allow to **identify** and block DGA-related domains (AGDs) timely.

System Description

System Evaluation

Conclusions

Domain Generation Algorithms: Defense

The DGA mechanism **does not allow proactive defense strategies** and does not have obvious vulnerabilities.

It is necessary to study defensive solutions that allow to **identify** and block DGA-related domains (AGDs) timely.

The natural observation point is the DNS infrastructure.

State of the Art

System Description

System Evaluation

Conclusions

State of the Art and Motivation

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

Domain Reputation Systems

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

Domain Reputation Systems

Domain reputation systems exist able to **tell malicious and benign domains apart**.

System Description

System Evaluation

Conclusions

Domain Reputation Systems

Domain reputation systems exist able to **tell malicious and benign domains apart**.

Some exist that do so by mining DNS network traffic, e.g., Exposure [Bilge et al. 2011], Kopis [Antonakakis et al. 2011], Notos [Antonakakis et al. 2010]

System Description

System Evaluation

Conclusions

Domain Reputation Systems

Domain reputation systems exist able to **tell malicious and benign domains apart**.

Some exist that do so by mining DNS network traffic, e.g., Exposure [Bilge et al. 2011], Kopis [Antonakakis et al. 2011], Notos [Antonakakis et al. 2010]

They leverage the fact that malicious domains tend to **exhibit different patterns** with respect to benign domains:

System Description

System Evaluation

Conclusions

Domain Reputation Systems

Domain reputation systems exist able to **tell malicious and benign domains apart**.

Some exist that do so by mining DNS network traffic, e.g., Exposure [Bilge et al. 2011], Kopis [Antonakakis et al. 2011], Notos [Antonakakis et al. 2010]

They leverage the fact that malicious domains tend to **exhibit different patterns** with respect to benign domains:

- Behavior over time
- TTL values
- Domain-IP mappings

• ...

State of the Art ○●○○○○○○ System Description

System Evaluation

Conclusions

Domain Reputation Systems: Drawbacks I

State of the Art ○●○○○○○○ System Description

System Evaluation

Conclusions

Domain Reputation Systems: Drawbacks I

They fail in correlating distinct yet related domains.

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art

System Description

System Evaluation

Conclusions

Domain Reputation Systems: Drawbacks I

They fail in correlating distinct yet related domains.

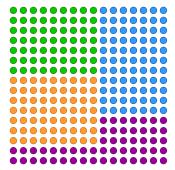
256 malicious domains

_____ _____ _____ _____ ______ _____ _____ _____

State of the Art

System Description

System Evaluation


Conclusions

Domain Reputation Systems: Drawbacks I

They fail in correlating distinct yet related domains.

256 malicious domains

_____ _____ _____ _____ _____ 4 distinct threats

State of the Art

System Description

System Evaluation

Conclusions

Domain Reputation Systems: Drawbacks II

They even fail in providing information about the **specific malicious activity** related to each domain.

State of the Art

System Description

System Evaluation

Conclusions

Domain Reputation Systems: Drawbacks II

They even fail in providing information about the **specific malicious activity** related to each domain.

- Command&Control of botnets?
- Phishing?
- Drive-by download?

State of the Art

System Description

System Evaluation

Conclusions

DGA Detection Systems

Stefano Zanero

Tracking and Characterizing Botnets Using Automatically Generated Domains

State of the Art 000●0000 System Description

System Evaluation

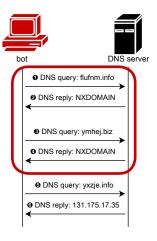
Conclusions

DGA Detection Systems

Detection systems exist that **specifically identify active DGAs** and related domains [Yadav et al. 2010, Yadav and Reddy 2012, Antonakakis et al. 2012].

State of the Art

System Description


System Evaluation

Conclusions

DGA Detection Systems

Detection systems exist that **specifically identify active DGAs** and related domains [Yadav et al. 2010, Yadav and Reddy 2012, Antonakakis et al. 2012].

They are driven by the hypothesis that malware-infected machines operating a DGA generate huge amounts of NX-DOMAIN DNS replies.

State of the Art

System Description

System Evaluation

Conclusions

DGA Detection Systems: Drawbacks

State of the Art

System Description

System Evaluation

Conclusions

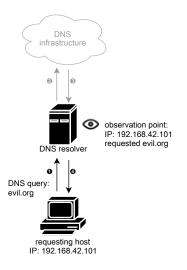
DGA Detection Systems: Drawbacks

Nevertheless, they require access to network data that:

- violates users' privacy,
- leads to non-repeatable experiments.

Stefano Zanero

State of the Art 0000●000 System Description


System Evaluation

Conclusions

DGA Detection Systems: Drawbacks

Nevertheless, they require access to network data that:

- violates users' privacy,
- leads to non-repeatable experiments.

State of the Art

System Description

System Evaluation

Conclusions

Objectives and Challenges

Stefano Zanero

Introduction 0000000000000000	State of the Art ○○○○○○●○	System Description	System Evaluation	Conclusions
Objectives				

Introduction 0000000000000000	State of the Art ○○○○○○●○	System Description	System Evaluation	Conclusions
Objectives				

Introduction 0000000000000000	State of the Art ○○○○○○●○	System Description	System Evaluation	Conclusions
Objectives				

 identifies active DGAs and the related domains with realistic hypoteses,

- identifies active DGAs and the related domains with realistic hypoteses,
- 2 correlates the activities of different domains related to the same DGAs.

- identifies active DGAs and the related domains with realistic hypoteses,
- 2 correlates the activities of different domains related to the same DGAs.
- **3** produces **novel knowledge** and **intelligence insights**.

Introduction 0000000000000000	State of the Art ○○○○○○●	System Description	System Evaluation	Conclusions
Challenges				

Studying DGAs translates into analyzing DNS traffic.

- Where to collect the traffic?
- How to process such high-volume and high-volatility data?

Challenges

Studying DGAs translates into analyzing DNS traffic.

- Where to collect the traffic?
- How to process such high-volume and high-volatility data?

No ground-truth information is available about DGAs, if not months after they have been employed.

State of the Art

System Description

System Evaluation

Conclusions

System Description

Stefano Zanero

Introduction	

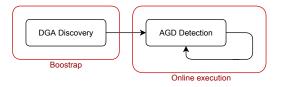
System Description

System Evaluation

Conclusions

Overview

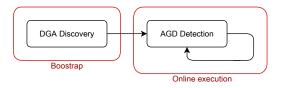
Stefano Zanero


Introduction	State of the Art	System Description
		000000000000000000000000000000000000000

System Evaluation

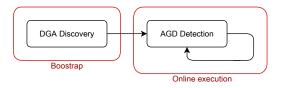
Conclusions

Overview


Phoenix works in two phases:

Introduction 000000000000000000000000000000000000	State of the Art	System Description	System Evaluation	Conclusions
<u> </u>				

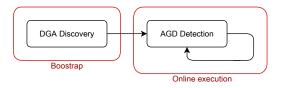
Phoenix works in two phases:


Jverview

DGA Discovery: Discovers DGAs active in the wild and characterizes the generation processes.

Introduction 000000000000000000000	State of the Art	System Description	System Evaluation	Conclusions
Overview				

Phoenix works in two phases:



DGA Discovery: Discovers DGAs active in the wild and characterizes the generation processes.

AGD Detection: Detects previously-unseen AGDs and assigns them to a specific DGA.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions
Overview				

Phoenix works in two phases:

DGA Discovery: Discovers DGAs active in the wild and characterizes the generation processes.

AGD Detection: Detects previously-unseen AGDs and assigns them to a specific DGA.

During its execution, it produces novel intelligence knowledge.

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

AGD Filtering: Rationale

Stefano Zanero

System Description

System Evaluation

Conclusions

AGD Filtering: Rationale

AGDs are the result of **randomized computations**. They look like **"high-entropy" strings**:

vljiic.org vitgyyizzz.biz f0938...772fb.co.cc nlgie.org jyzirvf.info aawrqv.biz hughfgh142.tk yxipat.cn fyivbrl3b0dyf.cn rboed.info 79ec8...f57ef.co.cc gkeqr.org xtknjczaafo.biz yxzje.info ukujhjg11.tk

Stefano Zanero

System Description

System Evaluation

Conclusions

.cc

AGD Filtering: Rationale

AGDs are the result of **randomized computations**. They look like **"high-entropy" strings**:

vljiic.org	vitgyyizzz.biz	79ec8f57ef.co.
f0938772fb.co.cc	nlgie.org	gkeqr.org
jyzirvf.info	aawrqv.biz	xtknjczaafo.biz
hughfgh142.tk	yxipat.cn	yxzje.info
fyivbrl3b0dyf.cn	rboed.info	ukujhjg11.tk

We automatize the process of **recognizing the randomness** of domain names.

System Description

System Evaluation

Conclusions

AGD Filtering: Rationale

AGDs are the result of **randomized computations**. They look like **"high-entropy" strings**:

vitgyyizzz.biz	79ec8f57ef.co.cc
nlgie.org	gkeqr.org
aawrqv.biz	xtknjczaafo.biz
yxipat.cn	yxzje.info
rboed.info	ukujhjg11.tk
	nlgie.org aawrqv.biz yxipat.cn

We automatize the process of **recognizing the randomness** of domain names.

We do so by computing linguistic-based features.

State of the Art

System Description

System Evaluation

Conclusions

AGD Filtering: Features I

Stefano Zanero

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions
AGD Filtering	g: Features l			

R: percentage of symbols of the domain name d composing meaningful words.

 Introduction
 State of the Art
 System Description
 System Evaluation
 Conclusions

 AGD Filtering:
 Features I
 State of the Art
 System Description
 System Evaluation
 Social System Evaluaticon
 Social System Evaluation

R: percentage of symbols of the domain name d composing meaningful words.

For instance:

d = facebook.com

$$R(d) = rac{|\texttt{face}| + |\texttt{book}|}{|\texttt{facebook}|} = 1$$

likely HGD

Stefano Zanero

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions		
AGD Filtering: Features I						

R: percentage of symbols of the domain name d composing meaningful words.

For instance:

 $d = ext{facebook.com}$ $d = ext{pub03str.info}$ $R(d) = rac{| ext{face}| + | ext{book}|}{| ext{facebook}|} = 1$ $R(d) = rac{| ext{pub}|}{| ext{pub03str}|} = 0.375.$ likely HGD likely AGD

 S_n : **popularity** of the *n*-grams of domain *d*.

System Description

System Evaluation

Conclusions

AGD Filtering: Features II

 S_n : **popularity** of the *n*-grams of domain *d*.

For instance:

d = facebook.com

fa ac ce eb bo oo ok 109 343 438 29 118 114 45

mean: $S_2 = 170.8$

likely HGD

 S_n : popularity of the *n*-grams of domain *d*.

For instance:

d = facebook.comd = aawrqv.comfa eb bo ok ac ce 00 aa aw wr rq qv 109 343 438 29 118 114 45 4 45 17 0 0 mean: $S_2 = 170.8$ mean: $S_2 = 13.2$ likely HGD likely AGD

State of the Art

System Description

System Evaluation

Conclusions

AGD Filtering: Construction

Stefano Zanero

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions			
AGD Filtering: Construction							

Every domain d is assigned a vector of linguistic features

 $f(d) = [R(d), S_1(d), S_2(d), S_3(d)]^T$

Every domain d is assigned a vector of linguistic features

$$f(d) = [R(d), S_1(d), S_2(d), S_3(d)]^T$$

We compute the values of f for the **100,000 most popular** domains according to Alexa, and we use them as reference.

Every domain d is assigned a vector of linguistic features

$$f(d) = [R(d), S_1(d), S_2(d), S_3(d)]^T$$

We compute the values of f for the **100,000 most popular** domains according to Alexa, and we use them as reference.

Automatically Generated Domain (AGD)

A domain d' is *automatically generated* when f(d') significantly diverges from the reference.

State of the Art

System Description

System Evaluation

Conclusions

AGD Filtering: Distance and Thresholds Identification I

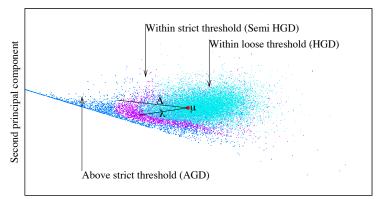
 Introduction
 State of the Art
 System Description
 System Evaluation
 Conclusions

 AGD Filtering:
 Distance and Thresholds
 Identification
 Identification
 Identification

We define the distance from the reference through the **Mahalanobis distance**.

We define the distance from the reference through the **Mahalanobis distance**.

We set two divergence thresholds $\lambda < \Lambda$, a strict and a loose one.


We define the distance from the reference through the **Mahalanobis distance**.

We set two divergence thresholds $\lambda < \Lambda$, a strict and a loose one.

We set the thresholds by **deciding** *a priori* the amount of error we wish to allow.

 Introduction
 State of the Art
 System Description
 System Evaluation
 Conclusions

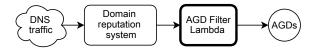
 AGD Filtering:
 Distance and Thresholds Identification II

First principal component

Stefano Zanero

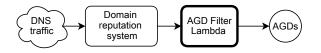
State of the Art

System Description


System Evaluation

Conclusions

Identifying AGDs Between Malicious Domains


Identifying AGDs Between Malicious Domains

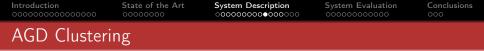
Starting from a *flat* list of malicious domains (e.g., Exposure), we identify those **malicious and automatically generated** (with strict threshold).

Identifying AGDs Between Malicious Domains

Starting from a *flat* list of malicious domains (e.g., Exposure), we identify those **malicious and automatically generated** (with strict threshold).

These domains are the result of different generation mechanisms, and thus have been employed by different botnets.

State of the Art


System Description

System Evaluation

Conclusions

AGD Clustering

Stefano Zanero

It is possibile to leverage historical DNS network traffic to **cluster** together domains employed by the same botnet.

State of the Art

System Description

System Evaluation

Conclusions

AGD Clustering: Approach

Stefano Zanero

State of the Art

System Description

System Evaluation

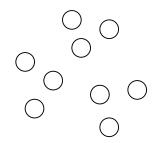
Conclusions

AGD Clustering: Approach

We build a graph such that

State of the Art

System Description


System Evaluation

Conclusions

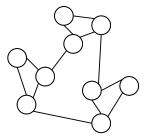
AGD Clustering: Approach

We build a graph such that

• every AGD is a node,

State of the Art

System Description


System Evaluation

Conclusions

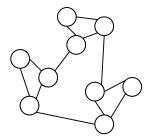
AGD Clustering: Approach

We build a graph such that

- every AGD is a node,
- an edge exists if two nodes resolved to the same IP,

State of the Art

System Description


System Evaluation

Conclusions

AGD Clustering: Approach

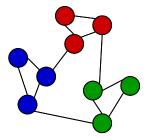
We build a graph such that

- every AGD is a node,
- an edge exists if two nodes resolved to the same IP,
- the stronger the peculiarity of the shared IP, the stronger the weight of the edge.

State of the Art

System Description

System Evaluation


Conclusions

AGD Clustering: Approach

We build a graph such that

- every AGD is a node,
- an edge exists if two nodes resolved to the same IP,
- the stronger the peculiarity of the shared IP, the stronger the weight of the edge.

The resulting graph is a **social network**. We wish to isolate the communities.

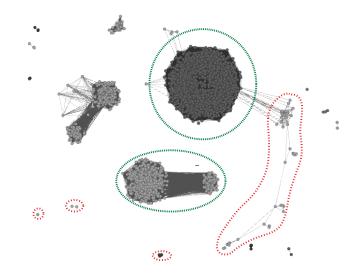
State of the Art

System Description

System Evaluation

Conclusions

AGD Clustering: Example


State of the Art

System Description

System Evaluation

Conclusions

AGD Clustering: Example

State of the Art

System Description

System Evaluation

Conclusions

AGD Fingerprinting

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

AGD Fingerprinting

The communities correspond to **families of domains**. Each family corresponds to a generation algorithm.

sbhecmv.tk	sedewe.cn	caftvmvf.org	zsx.net
dughuhg39.tk	lomonosovv.cn	gkeqr.org	vkh.net
dughuhg27.tk	jatokfi.cn	xtknjczaafo.biz	ypr.net
hughfgh142.tk	yxipat.cn	yxzje.info	vqt.org
ukujhjg11.tk	fyivbrl3b0dyf.cn	rboed.info	uon.org

State of the Art

System Description

System Evaluation

Conclusions

AGD Fingerprinting

The communities correspond to **families of domains**. Each family corresponds to a generation algorithm.

sbhecmv.tk	sedewe.cn	caftvmvf.org	zsx.net
dughuhg39.tk	lomonosovv.cn	gkeqr.org	vkh.net
dughuhg27.tk	jatokfi.cn	xtknjczaafo.biz	<pre>ypr.net</pre>
hughfgh142.tk	yxipat.cn	yxzje.info	vqt.org
ukujhjg11.tk	fyivbrl3b0dyf.cn	rboed.info	uon.org

We extract characterizing fingerprints from each family:

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

AGD Fingerprinting

The communities correspond to **families of domains**. Each family corresponds to a generation algorithm.

sbhecmv.tk	sedewe.cn	caftvmvf.org	zsx.net
dughuhg39.tk	lomonosovv.cn	gkeqr.org	vkh.net
dughuhg27.tk	jatokfi.cn	xtknjczaafo.biz	ypr.net
hughfgh142.tk	yxipat.cn	yxzje.info	vqt.org
ukujhjg11.tk	fyivbrl3b0dyf.cn	rboed.info	uon.org

We extract characterizing fingerprints from each family:

- TLD employed,
- linguistic features (e.g., length, character set),
- C&C IP addresses associated to the botnet.

State of the Art

System Description

System Evaluation

Conclusions

AGD Detection

Stefano Zanero

State of the Art

System Description

System Evaluation

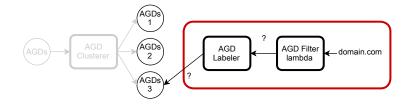
Conclusions

Classification of Previously-unseen Domains I

State of the Art

System Description

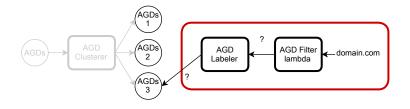
System Evaluation


Conclusions

Classification of Previously-unseen Domains I

We leverage the fingerprints to **classify previously-unseen domain**, so to extend the blacklist we employed during the bootstrap.

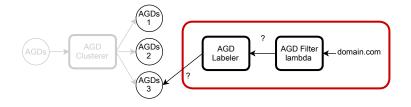
Introduction State of the Art System Description System Evaluation Conclusions


Classification of Previously-unseen Domains II

Given a previously-unseen domain, we answer the questions:

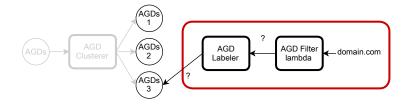
Introduction State of the Art System Description System Evaluation Conclusions

Classification of Previously-unseen Domains II



Given a previously-unseen domain, we answer the questions:

• does it look like it was **automatically generated** (with loose threshold)?



Given a previously-unseen domain, we answer the questions:

- does it look like it was **automatically generated** (with loose threshold)?
- 2 can we associate it with one of the known domain families?

Given a previously-unseen domain, we answer the questions:

- does it look like it was **automatically generated** (with loose threshold)?
- 2 can we associate it with one of the known domain families?

If yes, then we found a new malicious AGD.

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

System Evaluation

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Approach to Validation

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Approach to Validation

Validating Phoenix is far from trivial, as it **produces novel knowledge**.

State of the Art

System Description

System Evaluation

Conclusions

Approach to Validation

Validating Phoenix is far from trivial, as it **produces novel knowledge**.

For instance, no information is available about the membership of a given malicious domain to one family of AGDs

Approach to Validation

Validating Phoenix is far from trivial, as it **produces novel knowledge**.

For instance, no information is available about the membership of a given malicious domain to one family of AGDs

In lack of an established ground truth, we:

- run quantitative tests to validate each module,
- provide a qualitative validation of the whole approach.

State of the Art

System Description

System Evaluation

Conclusions

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

AGD Filter Evaluation: Dataset

Introduction 0000000000000000	State of the Art	System Description	System Evaluation ○0●000000000	Conclusions
AGD Filter E	valuation: I	Dataset		

We employ AGDs of **known botnets of the past** to verify the accuracy of the filter.

AGD Filter Evaluation: Dataset

We employ AGDs of **known botnets of the past** to verify the accuracy of the filter.

Specifically, we use the AGDs of:

- Conficker.A (7,500),
- Conficker.B (7,750),
- Conficker.C (1,101,500),
- Torpig (420),
- Bamital (36,346).

State of the Art

System Description

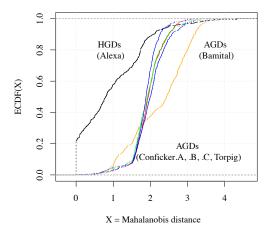
System Evaluation

Conclusions

AGD Filter Evaluation: Distance ECDF

Stefano Zanero

AGD Filter Evaluation: Distance ECDF


First, we show that the distance from the reference we employed **discriminates well** between HGDs and AGDs.

Conclusions

Introduction State of the Art System Description System Evaluation Conclusions

AGD Filter Evaluation: Distance ECDF

First, we show that the distance from the reference we employed **discriminates well** between HGDs and AGDs.

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

AGD Filtering Evaluation: Recall

System Description

System Evaluation

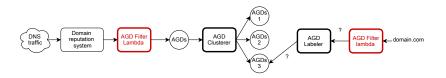
Conclusions

AGD Filtering Evaluation: Recall

Then, we validate the recall of the filter, with both the thresholds.

State of the Art

System Description


System Evaluation

Conclusions

AGD Filtering Evaluation: Recall

Then, we validate the recall of the filter, with both the thresholds.

	$d_{Mah} > \Lambda$	$d_{Mah} > \lambda$
	Pre-clustering selection	Recall
Conficker.A	46.5%	93.4%
Conficker.B	47.2%	93.7%
Conficker.C	52.9 %	94.8%
Torpig	34.2%	93.0%
Bamital	62.3%	81.4%

State of the Art

System Description

System Evaluation

Conclusions

AGD Clustering Evaluation

Stefano Zanero

Introduction State of the Art System Description System Evaluation Conclusions

AGD Clustering Evaluation

We show that the clustering based on DNS features **partitions** well the AGDs according to **DGA-dependent features** (e.g., TLD, domain length).

AGD Clustering Evaluation

We show that the clustering based on DNS features partitions well the AGDs according to DGA-dependent features (e.g., TLD, domain length).

We verify the correspondence between the families we isolate and some active botnets: Conficker, Bamital, SpyEye, Palevo.

AGD Clustering Evaluation

We show that the clustering based on DNS features **partitions** well the AGDs according to **DGA-dependent features** (e.g., TLD, domain length).

We verify the correspondence between the families we isolate and some active botnets: **Conficker**, **Bamital**, **SpyEye**, **Palevo**.

Moreover, we verify the sensitivity of the clustering from the configuration thresholds, and we evaluate them automatically.

State of the Art

System Description

System Evaluation

Conclusions

AGD Detection

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Detection of Previously-unseen Domains

State of the Art

System Description

System Evaluation

Conclusions

Detection of Previously-unseen Domains

We feed Phoenix with a previously-unseen DNS traffic dump.

State of the Art

System Description

System Evaluation

Conclusions

Detection of Previously-unseen Domains

We feed Phoenix with a previously-unseen DNS traffic dump.

We show that it identifies AGDs and associates each of them to a specific family.

State of the Art

System Description

System Evaluation

Conclusions

Detection of Previously-unseen Domains

We feed Phoenix with a **previously-unseen DNS traffic dump**. We show that it identifies AGDs and associates each of them to a specific family.

Previously-unseen domains			Previously-unseen domains		
hy613.cn	5ybdiv.cn	73it.cn	dky.com	ejm.com	eko.com
69wan.cn	hy093.cn	08hhwl.cn	efu.com	elq.com	bqs.com
hy673.cn	onkx.cn	xmsyt.cn	bec.com	dpl.com	eqy.com
watdj.cn	dhjy6.cn	algxy.cn	dur.com	bnq.com	ccz.com

State of the Art

System Description

System Evaluation

Conclusions

Detection of Previously-unseen Domains

We feed Phoenix with a **previously-unseen DNS traffic dump**. We show that it identifies AGDs and associates each of them to a specific family.

Previou	Previously-unseen domains			Previou	sly-unseen c	lomains
hy613.cn	5ybdiv.cn	73it.cn		dky.com	ejm.com	eko.com
69wan.cn	hy093.cn	08hhwl.cn		efu.com	elq.com	bqs.com
hy673.cn	onkx.cn	xmsyt.cn		bec.com	dpl.com	eqy.com
watdj.cn	dhjy6.cn	algxy.cn		dur.com	bnq.com	ccz.com
	➡				➡	
	Cluster A				Cluster B	
pjrn3.cn	3dcyp.cn	×0v7r.cn		uon.org	jhg.org	eks.org
0bc3p.cn	hdnx0.cn	9q0kv.cn		mzo.net	zuh.com	bwn.org
5vm53.cn	7ydzr.cn	fyj25.cn		zuw.org	ldt.org	lxx.net
qwr7.cn	xq4ac.cn	ygb55.cn		ntz.com	cbv.org	iqd.com

State of the Art

System Description

System Evaluation

Conclusions

Intelligence and Insights

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Intelligence and Insights

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Intelligence and Insights

We produced novel blacklists of AGDs.

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Intelligence and Insights

We produced novel blacklists of AGDs.

We discovered $\ensuremath{\mathsf{C\&C}}$ servers employed by each botnet

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Intelligence and Insights

We produced novel blacklists of AGDs.

We discovered C&C servers employed by each botnet

We processed data in a way which allows us to follow the evolution of each botnet over time.

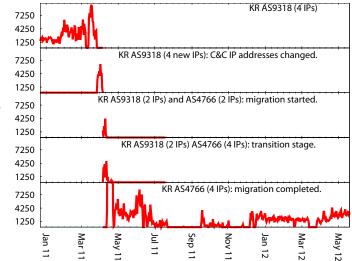
State of the Art

System Description

System Evaluation

Conclusions

Botnet Evolution Tracking: C&C Migration


State of the Art

System Description

System Evaluation

Conclusions

Botnet Evolution Tracking: C&C Migration

#DNS requests

Stefano Zanero

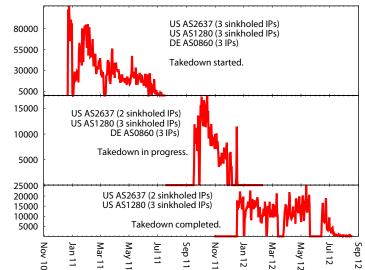
State of the Art

System Description

System Evaluation

Conclusions

Botnet Evolution Tracking: C&C Takedown


State of the Art

System Description

System Evaluation

Conclusions

Botnet Evolution Tracking: C&C Takedown

#DNS requests

Stefano Zanero

State of the Art

System Description

System Evaluation

Conclusions

Conclusions

Stefano Zanero

Introduction 00000000000000000	State of the Art	System Description	System Evaluation	Conclusions ●00
Limitations				

Introduction 0000000000000000	State of the Art 00000000	System Description	System Evaluation	Conclusions ●○○
Limitations				

The AGD Filter of Phoenix assumes to be always dealing with domains targeting an English-speaking population.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions ●00
Limitations				

The AGD Filter of Phoenix assumes to be always dealing with domains targeting an English-speaking population.

- Chinese domains? Swedish domains?
- Non-ASCII domains?
 - *π*.com
 - $\clubsuit \rightarrow \heartsuit \rightarrow \diamondsuit \rightarrow \diamond \rightarrow . \text{com}$

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions ●00
Limitations				

The AGD Filter of Phoenix assumes to be always dealing with domains targeting an English-speaking population.

- Chinese domains? Swedish domains?
- Non-ASCII domains?
 - $\pi.com$
 - $\clubsuit \rightarrow \heartsuit \rightarrow \diamondsuit \rightarrow \diamond \rightarrow .$ com

Phoenix **may not provide warnings earlier** than similar systems employing NXDOMAIN replies:

- it is fed with data that take longer to be collected,
- nevertheless, this makes our system **easier to deploy** and more **privacy-preserving**.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions ○●○
Conclusions				

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions ○●○
Conclusions				

Phoenix gives the following contributions:

Introduction 000000000000000000000000000000000000	State of the Art	System Description	System Evaluation	Conclusions ○●○
Conclusions				

Phoenix gives the following contributions:

 it identifies groups of AGDs between malicious domains and characterizes the generation processes under more realistic hypoteses with respect to similar approaches; Conclusions

Phoenix gives the following contributions:

- it identifies groups of AGDs between malicious domains and characterizes the generation processes under more realistic hypoteses with respect to similar approaches;
- it identifies previously-unseen malicious domains and associates them to the activity of a specific botnet;

Conclusions

Phoenix gives the following contributions:

- it identifies groups of AGDs between malicious domains and characterizes the generation processes under more realistic hypoteses with respect to similar approaches;
- it identifies previously-unseen malicious domains and associates them to the activity of a specific botnet;
- it produces novel knowledge, which allows—for instance—to track the evolution of a botnet over time.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions ○○●
Future Work				

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions ○○●
Future Work				

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions 00●
Future Work				

- try to capture the language target of each domain,
- evaluate its "randomness" according to that language.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions 00●
Future Work				

- try to capture the language target of each domain,
- evaluate its "randomness" according to that language.

Implement an incremental version of the clustering algorithm.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions 00●
Future Work				

- try to capture the language target of each domain,
- evaluate its "randomness" according to that language.

Implement an **incremental** version of the clustering algorithm.

Publish our findings and allow users to navigate the data (almost there... :-)

Thank you for your attention. Questions?

Let's keep talking on Twitter (@raistolo) or on email (stefano.zanero@polimi.it)

Stefano Zanero

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions	
Acknowledgments					

The work has been partially funded by the EPSRC-funded project "Mining the Network Behaviour of Bots", under research agreement EP/K033344/1, and by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257007 "SysSec"

References I

 Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster.
 Building a dynamic reputation system for dns.
 In Proceedings of the 19th USENIX conference on Security, pages 18–18. USENIX Association, 2010.

Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and David Dagon.
 Detecting malware domains at the upper DNS hierarchy.
 In Proceedings of the 20th USENIX Security Symposium, USENIX Security, volume 11, pages 27–27, 2011.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions
References II				

Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots: detecting the rise of DGA-based malware.

In USENIX Security '12. USENIX Association, August 2012.

Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi.

Exposure: Finding malicious domains using passive DNS analysis.

In Proceedings of NDSS, 2011.

 Jian Jiang, Jinjin Liang, Kang Li, Jun Li, Haixin Duan, and Jianping Wu.
 Ghost domain names: Revoked yet still resolvable.
 2012.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions
References III				

- Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna.
 Your botnet is my botnet: Analysis of a botnet takeover.
 In Proceedings of the 16th ACM conference on Computer and communications security, pages 635–647. ACM, 2009.
- Sandeep Yadav and AL Narasimha Reddy. Winning with DNS failures: Strategies for faster botnet detection.

Security and Privacy in Communication Networks, pages 446–459, 2012.

Introduction 0000000000000000	State of the Art	System Description	System Evaluation	Conclusions
References IV				

- Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Narasimha Reddy, and Supranamaya Ranjan.
 Detecting algorithmically generated malicious domain names.
 In Proceedings of the 10th annual conference on Internet measurement, pages 48–61. ACM, 2010.
- Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Narasimha Reddy, and Supranamaya Ranjan. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis. 2012.