Security of Cyber-Physical Systems

IEEE NTIS 2012 at Boeing

Stefano Zanero, PhD
Politecnico di Milano, Italy

Aug 23, 2012, Rosslyn, VA
Buongiorno!

- I'm an assistant professor at Politecnico di Milano, Italy's largest engineering school, with ~38,000 students.
- My laboratory deals with Novel, Emerging Computing System Technologies, and encompasses the system security research efforts.
... and I also personally flew one of your products!
... and I also personally flew one of your products!

- Well, sort of...
- I “flew” a simulated version of I-DISA, an Alitalia B777-243 (ER)
- Just wished to mention that I am an aviation enthusiast, and I am particularly pleased and honored to be here with you today!
Scope of this talk

- This talk deals with security of cyber-physical systems
- In particular, with the vulnerabilities at the separation layer of such systems
Security vs. safety

- The airline industry has a strong safety focus
- Safe = unlikely to cause unintentional harm
- Secure = resilient to intentional attack
- Many different definitions, gray areas
Cyber-physical systems

- Evolution of the traditional embedded systems for control
- E.g. SCADA systems, avionics, vehicular control and infotainment, “smart grid”
- I suppose you know what's the “naked” CPS on the left...
Vulnerabilities

- In information security, a vulnerability is a weakness which allows to reduce a system's *information assurance*.
- More generally, a vulnerability is a *weakness* in a system that makes it susceptible to being damaged, or more generally makes it unfit to withstand some external condition.
- We should not confuse the existence of a *vulnerability* with the existence of a *threat* (e.g. an attacker), or with the existence of one or more specific *exploits* for that vulnerability.
Security as managing risks

- All (information) systems are vulnerable
- This is not a self-justifying mantra, it's a basic fact of life: invulnerability, just like perfection, is but an illusion
- **Vulnerabilities**, their **exploitability** and the existence and prevalence of **threats** combine with the potential of **damage** to create **risks**
- Security is the discipline of managing **risk** reducing it to a tolerable level, balancing the costs
- The issue of securing **critical systems** is the same you face in aviation for **safety**: it is very difficult to gauge the product of very low probabilities times very high potential damage
Fact check

- Want to check with you some facts
- Fact 1: CPS are increasingly involved in critical infrastructures and safety-critical systems
- Fact 2: CPS are increasingly becoming control loops closed without humans in the middle
- Fact 3: CPS are evolving towards complex networks of complex systems, rather than single, embedded, simple systems
- Fact 4: threat level by actors likely to act against these systems is constantly on the rise
Fact 1: critical systems

“... potential (cyber)attacks against network infrastructures may have widespread and devastating consequences on our daily life: no more electricity or water at home, rail and plane accidents, hospitals out of service”

Viviane Reding
VP of European Commission
Train signals

Computer Virus Brings Down Train Signals

The virus infected the computer system at CSX's headquarters, shutting down signaling, dispatching, and other systems for trains throughout the East.

By Marty Niland, Associated Press Writer
InformationWeek
August 20, 2003 06:00 PM

NEW YORK (AP) -- A computer virus was blamed for bringing down train signaling systems throughout the East on Wednesday.

The virus infected the computer system at CSX Corp.'s Jacksonville, Fla., headquarters, shutting down signaling, dispatching, and other systems at about 1:15 a.m. EDT, CSX spokesman Adam Hollingsworth said.
Hacker Disables More Than 100 Cars Remotely

By Kevin Poulsen March 17, 2010 | 1:52 pm Categories: Breaches, Crime, Cybersecurity, Hacks and Cracks

More than 100 drivers in Austin, Texas found their cars disabled or the horns honking out of control, after an intruder ran amok in a web-based vehicle-immobilization system normally used to get the attention of consumers delinquent in their auto payments.

Police with Austin’s High Tech Crime Unit on Wednesday arrested 20-year-old Omar Ramos-Lopez, a former Texas Auto Center employee who was laid off last month, and allegedly sought revenge by bricking the cars sold from the dealership’s four Austin area lots.
The power grid

Energy Resources

Computer virus in Australian power grid

Published: Oct. 2, 2009 at 4:22 PM

SYDNEY, Oct. 2 (UPI) -- A “sinister” computer virus has infected computers controlling Australia’s integral energy power grid.
French fighter planes grounded by computer virus

French fighter planes were unable to take off after military computers were infected by a computer virus, an intelligence magazine claims.

by Kim Willsher in Paris
Published: 11:43AM GMT 07 Feb 2009
Fact 2: no human in the middle
Knight Capital Says Trading Glitch Cost It $440 Million

BY NATHANIEL POPPER

Errant trades from the Knight Capital Group began hitting the New York Stock Exchange almost as soon as the opening bell rang on Wednesday.

4:01 p.m. | Updated

$10 million a minute.
Algorithmic trading fails

- ~40% of share orders in Europe by algorithmic trading; 5 yrs ago, 20%. In the U.S. 37%. (src: Tabb Group)
- Knight trading is just the latest failure
- Svend Egil Larsen (Norwegian trader) in 2007 reversed the trading algorithm of Timber Hill, a unit of US-based Interactive Brokers, found a flaw and exploited it for $50,000 (U.S.) in a few months. Not guilty, btw.
- Deutsche Bank’s trading algorithms in Japan took out a $182-billion stock position by mistake in 2010
- “Flash crash” in 2010, Dow Jones Industrial Average swung hundreds of points in 20 minutes – exacerbated by trading algorithms kicking in
Fact 3: complexity of networks
Interconnection...

Common Core System Benefits

Common Data Network
- Open industry standard interfaces A664
- Eliminate multiple standards & protocols
- Fiber Optic Network media

Common Computing Resource
- Based on Open System Architecture Principles

- Modular Implementation of common elements with robust partitioning of functions in software
- Hierarchical layering of services having well defined, standardized, rigidly enforced key interfaces A653

Remote Data Concentrators
- Reduces airplane wiring/weight,
- Ease of system upgrade/modification
- Highly reliable
... and convergence

Avionics Integration Beyond 777

Surveillance
- WXR
- EGPWS
- TCAS
- ATC

Integrated Surveillance System (ISS)

Integrated Navigation Radios (INR)

777

787

Nav Radios
- VOR
- MB
- MMR
- DME
- RA

Comm Radios
- VHF
- HF
- SATCOM

Inertial
- ADIRU
- SAARU

Earth Reference System (ERS)

Other LRUs
- WEU
- Others

Common Core Resource (CCR)
- Air Data
- Crew Alerting
- Comm Management
- Data Acquisition
- Displays
- FM / TM / AT
- Health Management
- Gateways
- Others

- AIMS
- Displays
- DFDR
- FM / TM
- COM / ACMF / QAR
- FDCF
- Gateways
- Others
Interconnection (too much of it)
Fact 4: rising threats

Figure D.4

Figure B.12
Average Number Of Targeted Email Attacks Per Day, 2011

All the data comes from the Internet Security Threat Report 2011
Find the differences...

- Remember that Northrop was one of the first targets of the APT (Advanced Persistent Threat) campaign in 2009
- Suggestive, isn't it?
It's not just about the Chinese

How Stuxnet Spreads

Experts who have disassembled the code of the Stuxnet worm say it was designed to target a specific configuration of computers and industrial controllers, likely those of the Natanz nuclear facility in Iran.

INITIAL INFECTION

Stuxnet can enter an organization through an infected removable drive. When plugged into a computer that runs Windows, Stuxnet infects the computer and hides itself.

UPDATE AND SPREAD

If the computer is on the Internet, Stuxnet may try to download a new version of itself. Stuxnet then spreads by infecting other computers, as well as any removable drives plugged into them.

FINAL TARGET

Stuxnet seeks out computers running Step 7, software used to program Siemens controllers. The controllers regulate motors used in centrifuges and other machinery. While the computers in a secure facility may not be on a network, they can be infected with a removable drive. After infecting a controller, Stuxnet hides itself. After several days, it begins speeding and slowing the motors to try to damage or destroy the machinery. It also sends out false signals to make the system think everything is running smoothly.
The slippery slope of cyberwar

- **Stuxnet**: designed to sabotage Iran's nuclear facilities

- **Duqu**: discovered a few months later, possibly created earlier, same platform as Stuxnet; uses zero-day; designed to collect data on the Iranian nuclear program (which ended up in the ends of UN)
And then came the flame

- Flamer: enormous malware specimen discovered in 2012 by ITU; intelligence gathering; encryption zero day (!); component link to Stuxnet (!!)
- Gauss: similar to the others in many way, includes banking trojan and an encrypted payload which wasn't cracked yet

No comment to the above image (detailing diffusion of Flame) is probably needed.
Facts checked!

- Fact 1: CPS are increasingly involved in critical infrastructures and safety-critical systems
- Fact 2: CPS are increasingly becoming control loops closed without humans in the middle
- Fact 3: CPS are evolving towards complex networks of complex systems
- Fact 4: threat level by (state/nonstate)-actors likely to act against these systems is constantly on the rise

All of this leads, at the same time, to increasing attack surfaces, vulnerability exposure, threat prevalence, potential damage

What about defense then?
Where we are: legacy woes

Carl quit. He's the only one who knows how to program the legacy system.

It can't be that hard. Go figure it out.

Frack.

I found a family of squirrels living inside our legacy system.

They control our payroll database. They're making demands.

Leave the acorns and no one will get their deductions increased.

© Scott Adams, Inc./Dist. by UFS, Inc.
Forever day bugs

- Zero-day: an unknown vulnerability exploited by an attacker
- Forever day: an old, beaten-to-death vulnerability still around
- Most CPS are change averse, and thus prone to forever day bugs
- RuggedCom is in good company with ABB, Schneider Electric, and Siemens

RuggedCom forever day: Known username, fixed password easy to crack, impossible to disable
Where we are going: hardware attacks

Rakshasa is a fully functional bootkit resident in RAM and invoked by a seemingly sane BIOS/firmware

Cambridge Scientist Defends Claim That US Military Chips Made In China Have 'Backdoors'

A powerful new report by Cambridge scientist Sergei Skorobogatov hit the Internet over the weekend confirming Chinese computer chips used in U.S. military systems have hidden "back doors" that can disable everything from American fighter jets to nuclear power plants.

It's a bold claim that until now has been impossible to prove, but Skorobogatov says he has developed a new ultra-sensitive technology that's able to detect "malicious insertions" into chips. "The scale and range of possible attacks," he says, "has huge implications for National Security and public infrastructure."

After the initial flurry of excitement, a response cropped up on the security blog Errata saying Skorobogatov's claim was bogus and there is actually no back door at all. We asked the scientist to respond to that post specifically in our list of questions and answers below.

BTW, that's the Microsemi/Actel ProASIC3, used on the 787...
The perfect storm

- Vulnerabilities arising at the boundary where digital and physical connect
- The trading algorithms are a first example
- Smart grid vulnerabilities are another excellent example of possible positive feedback loops between the two realms
Conclusions

- We are brewing a perfect digital storm with unfathomable consequences
- We are using complex networks of digital systems to control *critical infrastructures* and *safety-critical* systems, without humans in the loop
- Threat level by (state/nonstate)-actors likely to act against these systems is constantly on the rise, and we are actively contributing to legitimize this
- We have issues with zero-days as well as forever-days, and we have significant upcoming threats (malicious hardware and interstitial layer threats)
- **We need significant engineering and research efforts** to get this done and avert the storm
Questions?

- Thank you for your attention!
- You can reach me at s.zanero@computer.org
- Or just tweet @raistolo
This presentation was delivered at NTIS 2012, a cooperative effort between:

- IEEE Technical Activities Board, Future Directions Committee
- The Boeing Company

Our research on these topics has been partially funded by the European Commission under FP7 project SysSec, and by NATO under SfP grant 983805