Stream – Oriented Network Packet Capture

Hot topics in Security Research – the Red Book

Evangelos Markatos
FORTH-ICS
Two-part presentation

1. Stream oriented packet capture
 - For high-speed networks
 - appeared in IMC 2013 and JSAC 2014

2. Research Directions in Cyber Security
 - The Red Book experience
Scap: Stream-Oriented Network Traffic Capture and Analysis for High-Speed Networks

Antonis Papadogiannakis
Michalis Polychronakis

Evangelos P. Markatos

FORTH-ICS, Greece
Columbia University, USA
FORTH-ICS, Greece
Network Traffic Monitoring Systems

- Recent security applications depend on network traffic inspection
 - Network-level **intrusion detection**
 - Network traffic classification
 - Next-generation **firewalls**
How do they do it?

- They **capture** IP packets
 - tcpdump/libpcap
 - PF_RING
 - PFQ
 - netmap
 - PacketShader I/O

- And they **deliver IP packets** to network monitoring applications
In this work we argue that

Packets are the wrong abstraction

- Connection-oriented analysis at L4 and beyond
- Attacks spanning multiple packets
- Protocol normalization to avoid evasion attempts

Stream Reassembly

ATTACK

BENIGN
Stream Reassembly Libraries

- We are not the first to propose stream reassembly:
 - Libnids
 - Stream5
 - Bro’s TCP stream reassembly
 - Custom stream reassembly implementations

- All such approaches are:
 - Implemented on top of packet capture libraries
 - Operate at user-level
 - Buffer packets or copy segments
Do we need another library?
Yes, to bridge a **semantic gap**

- **Monitoring applications** interested in analyzing traffic at **higher layers**
 - TCP flows, HTTP headers, SQL arguments, email messages
- **Traffic capture libraries** provide **raw packets**
 - Interleaved flows, out-of-order, duplicate, overlapping, uninteresting packets
Yes, to enable aggressive optimizations

- **Truncate** streams to handle large traffic volume
- Early discarding of **uninteresting** traffic
- Assign **priorities** to streams
- **Overload** control
- Utilize **multi-core** systems for stream processing
The Stream Capture Library (Scap)

- Captures and processes L4 **reassembled** streams
- Uses the abstraction of the **stream** (not packet)
- **Multi-core** support for stream capturing and stream processing
- Truncates streams with **subzero copy** at kernel or NIC
- Assigns **priorities** to streams and tolerate **overloads**

- Implements optimizations at the appropriate level (user level, kernel level, NIC)
Scap compared to other frameworks

*Support for multiple CPU cores and advanced NIC features (RSS, filters)

- Libnids
- Stream5
- MAPI
- Libpcap
- Scap*
- FFPF
- netmap*
- PF_RING*
- FLAME

Abstraction
Set of Packets
Packet Stream
User Level
Kernel Level
Implementation
Stream Capture

- Store reassembled and normalized data segments to **stream-specific** memory locations
- Create events for stream creation, stream termination, data availability

memory buffer for stream A memory buffer for stream B
Stream Cutoff

- Analyze the **first N bytes** of each stream
- Cut the **long tails** if not interesting
- Use Scap and set **cutoff** size per each stream
Subzero Packet Copy

- Early discarding of uninteresting traffic at the NIC
 - Utilize NIC filters
 - No CPU cycles spent for uninteresting packets
 - Receive TCP FIN/RST and use timeout for stream termination and accounting
Prioritized Packet Loss

- In case of **overload** accommodate **high-priority** streams

![Diagram]

- Available Memory
- Base Threshold
- Dropped

- High Priority Stream
- High Priority Stream
- Low Priority Stream
- High Priority Stream
- Low Priority Stream
- Low Priority Stream
- Low Priority Stream
- Low Priority Stream
Flexible Stream Reassembly

- Stream reassembly at **user level** cannot control dropped packets
 - Missed control packets (TCP SYN, ACK, FIN, RST)
 - Captured streams with **holes**
 - Extreme and pointless buffering in case of dropped packet
- **Scap controls** which packets are dropped
 - No control packet is missed
 - Captured **contiguous** streams
 - **Best effort** stream reassembly mode
- Different policy/OS implementation per stream
Other Features

- **Multiple applications** sharing the same reassembled streams
 - Best effort to satisfy all requirements

- **Packet delivery** per stream chunk if requested
 - Keep packet metadata and pointers to stream data

- **Parallel** stream processing using worker threads

- **Improved locality**
 - Keep related packets close
 - Capture and process a stream in the same core
The Scap Architecture

...
The Scap Kernel Module

- Event creation
- Memory management
- stream_t handling
- Stream reassembly

Events queue:
- sd1
- sd2

Memory pages:
- sd1
- sd2

Stream_t hashtable:
- sd1
- ...
- sd2
- ...

Shared memory with Scap stub
Experimental Evaluation
YAF receives only 96 bytes per packet and starts dropping packets at 4 Gbit/s.
Scap processes all packets up to 6 Gbit/s.
Libnids starts dropping packets at 2 Gbit/s at 4 Gbit/s.
Stream Delivery

Packet Loss

- **Libnids**
- **Snort**
- **Scap**

- Scap delivers streams with no packet loss up to 5.5 Gbit/s
- Snort starts dropping packets at 2.75 Gbit/s
Cutoff Points

Packet Loss (Pattern matching, 4 Gbit/s)

Even when all streams’ data are discarded, Libnids and Snort experience 40% packet loss.

Scap does not drop any packet for stream cutoff values lower than 1 MB at 4 Gbit/s.
Conclusions

- Identified a **semantic gap**
 - Applications want high-level abstractions
 - Monitoring systems provide low-level packets
- Proposed the **stream** abstraction
- Better performance:
 - 2x throughput compared to Libnids and Stream5
- Truncate streams with **subzero copy** at the NIC
- Prioritized packet loss with **stream priorities**
Hot topics in Security Research – the Red Book

Evangelos Markatos
FORTH-ICS
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
Cyber Security is increasingly important

- The European Cyber Security Agenda:
 - 148,000 computers compromised daily
 - Symantec suggests that
 - Cybercrime victims lose 290 billion euros annually
 - 18% of users are less likely to buy goods online
 - 74% agreed that the risk of becoming a victim of cybercrime has gone up in the past year
Cyberattacks are getting more prevalent

- Hackers are getting more effective
- Users are getting more concerned
 - 12% of Internet users has experienced fraud
 - 8% have been victims of ID theft

» (src: Eurobarometer 390)
What is the impact of attacks?

“... potential (cyber)attacks against network infrastructures may have widespread and devastating consequences on our daily life: no more electricity or water at home, rail and plane accidents, hospitals out of service”

Viviane Reding
VP of the European Commission
European Cybersecurity Month

“in tomorrow’s world if the internet isn’t secured, nothing will be ...”

Neelie Kroes
VP of the European Commission
How large is it?

- Cybercrime is *larger than*
 - *The global black market in marijuana, cocaine and heroin combined*

--Symantec
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
What shall we do?

- **Understand** the important Research Issues
- **Write them down** in a book
- **Circulate** it widely
 - So that researchers can work on them

- **The result:**
 - **The Red Book**
 - *in Cyber Security*
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
How did we do it?

- To build a winning team you need
 - Excellence,
 - Talent, and
 - Desire to work hard.

We assembled a Task Force of young European Researchers
Task Force

MEMBERS

Elias Athanasopoulos
Columbia University

Fedrico Maggi
Politecnico di Milano

Asia Slowinska
Vrije Universiteit

Lorenzo Cavallaro
Royal Holloway University of London

Michalis Polychronakis
Columbia University and FORTH

Iason Polakis
FORTH and University of Crete
Contributors

Magnus Almgren
Chalmers
Sotiris Ioannidis
FORTH
Philippas Tsigas
Chalmers

Herbert Bos
Vrije Universiteit
Christian Platzer
TUV
Stefano Zanero
Politecnino di Milano

Dennis Andriesse
Vrije Universiteit
Farnaz Moradi
Chalmers University
Simin Nadjm-Tehrani
Linköping University

Martina Lindorfer
TU Vienna
Zlatogor Minchev
Bulgarian Academy of Sciences
Christian Rossow
Vrije Universiteit
Chairs

SYSSEC TASK FORCE for the ROADMAP on SYSTEMS SECURITY RESEARCH

CO-CHAIRS

Evangelos Markatos
SysSec Project Manager
Foundation for Research and Technology - Hellas

Davide Balzarotti
SysSec WP4 Leader
Eurecom
The making of Red Book

- “Rank the threats” workshop
 - Which are the important threats?
 - Rank them
- “What if” questions
- Grand Challenges
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
“What if” Questions

- Examples from other disciplines
 - What if …
 - Antibiotics do not work anymore?
 - How would this impact medicine research?
 - There are no more fossil fuels to burn in 5 years?
 - How would this impact research in energy sources?

- “What if” questions
 - What if there is no more malware?
 - What if 50% of the computers are compromised?
 - What if there is no death? (for our data)
 - What if there is no Internet? (for a day or two)
“What if” Questions

- What if there is no more malware?
 - Will Security Research be over?
 - Will there be any security issues?
 - How about privacy issues?

- What if 50% of the computers are compromised?
 - How would you use them?
 - Why? When?
 - Would you do e-banking?
 - Under what circumstances?
“What if” Questions

- What if there is no death? (for our data)
 - Can we donate them?
 - Can we pass them on to our children?
- What if there is no Internet? (for a day or two)
 - What would work? What would not work?
 - Traffic? Air travel?
 - Will you be able to go home?
 - From work? from a business meeting?
Example “what if”

- **What if there is no death? (for our data)**
 - Will they be available after we pass away?
 - Can our children “inherit” our data?
 - Will they be able
 - to “own” our data?
 - to pass them on to the next generation?
 » much like family photo albums?
 - Can we donate our data?
 - to Science?
 - Are there any security/privacy implications?
- **Can we incorporate all our data to an avatar?**
 - Will the avatar be able to act on behalf of us?
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
The Threats

- “Rank the threats” workshop
 - Which are the important threats?
 - Rank them
Cyber-security landscape

- Threat – Vulnerabilities
- Assets
- Domains
- Horizontal Research Areas
Threats - Vulnerabilities

Rank the importance of the following emerging Threats

- targeted attacks
- malware
- APTs
- software vulnerabilities
- web vulnerabilities
- misplaced trust
- data breaches
- social engineering/phishing
- DoS attacks
- insider threats

Percentage of Responders

- 1st
- 2nd
- 3rd
- 4th
- 5th
Assets

Rank the importance of the following Assets

- identity
- privacy
- health
- money/financial well being
- freedom (e.g., of speech)
- anonymity
- democracy/sovereignty
- reputation
- IPR
- the right to be forgotten

Percentage of Responders

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%
Domains

Rank the importance of the following Domains

- critical infrastructures
- mobile devices
- social networks
- smart environments
- untrained users
- the cloud
- embedded systems
- e-commerce
- legacy systems
- implantable devices

Percentage of Responders

0% 10% 20% 30% 40% 50% 60% 70%
Most important threats

- Malware
- Targeted Attacks – Advanced Persistent Threats
- Social Engineering - Phishing
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
Grand challenges

- No device should be compromisable
- Give users control of their data
- Provide private moments in public places
- Develop compromise-tolerant systems
Example Grand Challenge

- Give users control over their data
- Users should be able to
 - know which data they have created
 - know which data they have given to which third parties
 - Cookies, accesses, IP addresses, MAC addresses, etc.
- Revoke all access to their data
- Ask data to be deleted
 - if this is not prohibited by law
RoadMap of the talk

- Introduction
- The Red Book
- The making of the Red Book
- “What if” Questions
- The Threats
- The Grand Challenges
- Summary
Summary

- The Red Book:
 - Identify Research Directions in Systems Security

- The making of it:
 - Task Force of young excellent scientists
 - They drive the work
 - Workshop with the community
 - Everyone is engaged

- The result:
 - Threats, assets, priorities
 - Grand Challenges
Hot topics in Security Research –
the Red Book

Evangelos Markatos
FORTH-ICS
The Red Book

Managing Threats and Vulnerabilities in the Future Internet