Privacy-preserving Policies,
Protocols and Architectures

The Problem

We operate in highly-connected, multi-
application, multi-device environments

We want to control flow of information in a
consistent fashion

We want to agree on what information we
want to exchange and how

We want to do all this without loss of privacy

There is a semantic gap between policy and
mechanism

This Talk

. How multiple devices, applications, etc. can
enforce the same privacy policy

. How we can agree on policies and data
exchanges in a privacy-preserving fashion

Definitions/Framework

Policy [Lam71, Slo94, SV00]

- A set of rules that express what actions are allowed/not allowed to happen in
a system - e.g. foo is allowed to see bar

Policy specification [WL93, Slo94]

- Expression of the rules which is independent of where or how they are
evaluated - e.g. doctors are permitted to access my _medical_data

Policy evaluation [DDLSO01, IBS01]

- Actual interpretation of a rule when it gets triggered by an action

Mechanism [DDLSO01, IBS01]

- The element that interprets rules when they get triggered by user actions

Equivalence [I105]

- The same policy rule evaluates to the same result on different mechanisms

Consistency [I05]

- There are no cases of policy rules not being equivalent

Example

Policy for home network:
1. Owner can access all files
Friends can access private files

2.
Phone 3. Colleagues can access work files
4. Others can access public files

Storage

Enforcement of the same Policy

« Under certain (common) conditions (discussed
later), policy consistency is possible without solving

the halting problem
« Approach:

- We must find inconsistencies that occur
between the policy specification level and
the mechanism level!

Why should we care?

« Maintaining correct policy in decentralized
environments is an important, complex, and
challenging task

- It's what most of today’s environments are like
- Increased number of hosts, applications, users, efc.
- Diverse hosts, applications, users, efc.

- Configuration changes over time
. Even ifinitially correct it might progressively get out of sync

« Correct can mean a number of things:

- Reflects policy maker’s intention, is conflict free, is
consistent (what we are interested in), etc.

Policy Consistency

« What itis:

- Gap between policy specification level and mechanism level

« Rules refer to abstract policy objects and are enforced on
application specific objects

- Possible discrepancies

« Mismappings between policy objects and managed
objects

- The same policy gives the same result on every mechanism

« A subject forbidden to perform an action on some node,
should not be allowed to perform it on any other node

o It is actually not necessary to solve the halting problem!!

« What it is not:

- Not trying to prove program equivalence

Previous Work

« Piecemeal configuration (FW, compartmented FS,
etc.)

« Single security policy language, decentralized
mechanism (Ponder, SPL, KeyNote, eftc.)

« Policy conflicts ([SPH88, LPGSF90, JSS97, LS99,
etc.])

- Hierarchy, narrowness, priority, modality,
efc.

- Not what we are interested In

Consistency, Assumptions:

Single security policy that governs the systems
- Abstractly defines rules about resources

M mechanisms responsible for policy evaluation
- Heterogeneous and distributed

- Each mechanism uses its own representation of
resources

- Each mechanism is implemented correctly (no bugs)
Resource identities exist uniquely

These are realistic assumptions, that’'s how today's
systems are architected

Consistency Checking, Basic ldea:

Policy rules define whether a subject is allowed to perform
an action on a target

- e.g. a tuple <someuser, someaction, someresource>
Policy language refers to high-level object abstractions
- e.g. TrustedUsers, PrivateFiles, efc.
Abstractions map to application/OS/etc. specific objects
- e.qg. root, medicalrecords.pdf, efc.
Application/OS/etc. objects map to real objects
- e.g. some person, some file on disk, efc.

Given such rules and mappings, for every mechanism,
exhaustively explore the state space for inconsistencies

Overview of Consistency Algorithm:

Step 1: Correctness theorem:
for (all mechanisms)
for (all rules) - Finds inconsistencies in policy
for (all mappings between by identifying all rules for

policy and mechanism)

which their evaluation on
expand and create tuple

different mechanisms gives

Step 2: different results
for (every pair of mechanisms) . PrOOf'
for (every pair of tuples)) _
compare - Exhaustive search
« Complexity:

- O((|mechanisms|*|tuples]|)*2)
where |tuples| is a function of
the |rules| and |objects]|

Consistency Example 1

Policy:

Clinic heads are allowed complete access to the patient files
<Clinic Head, Complete Access, Patient Files>

« Clinic 1 server:
- Clinic Head : root -> Alice

- Complete Access: riw ->
Read/Write

- Patient Files: /remote/recs ->
Records

Consistency Example 2

Policy:

Doctors are allowed partial access to the patient files
<Doctor, Partial Access, Patient Files>

Clinic heads are allowed complete access to the patient files
<Clinic Head, Complete Access, Patient Files>

« Clinic 2 server:
- Doctor: alice -> Alice
- Clinic Head: root -> Bob
. r-> Read

- Complete Access: rlw ->
Read/Write

- Patient Files: recs->
Records

Consistency Example 3

Policy:
Doctors are allowed partial access to the patient files
<Doctor, Partial Access, Patient Files>

Clinic heads are allowed complete access to the patient files
<Clinic Head, Complete Access, Patient Files>

e Clinic 1 server: e Clinic 2 server:
- Doctor: alice -> Alice

- Clinic Head: root -> Alice - Clinic Head: root -> Bob
. r-> Read
- Complete Access: rlw -> - Complete Access: r/w ->
Read/Write Read/Write
- Patient Files: /[remote/recs -> - Patient Files: recs->

Records Records

Consistency Example 3, cont.

Policy:
Doctors are allowed partial access to the patient files
<Doctor, Partial Access, Patient Files>
Clinic heads are allowed complete access to the patient files
<Clinic Head, Complete Access, Patient Files>

e Clinic 1 server: e Clinic 2 server:
- <root, r/w, /remote/recs> - <alice, r, recs>

. Alice, Read/Write, . Alice, Read, Records
Records - <root, r/w, pass>

. Bob, Read/Write,
Records

Consistency Example 3, cont.

Policy:
Doctors are allowed partial access to the patient files
<Doctor, Partial Access, Private Files>
Clinic heads are allowed complete access to the patient files
<Clinic Head, Complete Access, Private Files>

« Clinic 1 server: « Clinic 2 serv

- <root, r/w, /remote/recs> - <alice, r, recs>

« Alice, Read/Write, . Alice, Read, Records
Records

Policy inconsistency

How “expensive” is it to use?

o O((|mechanisms|*|tuples|)*2) where |tuples]
is a function of the [rules| and |objects|

o It's best to run incrementally

- Adding a new mechanism: O(Jmechanisms|*|tuples|*2)

- Adding/modifying a new rule: only compare the newly
generated tuples

- Adding/modifying an object/mapping: only compare the
newly generated tuples

How “practical” is it to use?

« Our tool can potentially generate a large
number of potential inconsistencies

« However:

- It's better to have some idea of what problems
your system may have

- If the list is not “gigantic” then we can fix the
Inconsistencies

- It's a first step towards automation — use
resolution heuristics

- As we pointed out before, it's best run
incrementally

Summary so far

« Results and Contributions

- Framing of the problem of policy consistency

« Bridging the semantic gap between policy and
mechanism

« Departure from the notion of policy conflicts
- Procedure for determining policy
consistency on heterogeneous systems

« Methods for assisting policy writers to debug
policies

Open Directions

« Multiple administrative domains
« Error reporting and recovery

« Preservation of intent

« Solve the halting problem

Privacy-preserving Policy
Reconciliation

* Reconcile policies between multiple parties

PN
Session policy Bob

1.

2.

Motivation: Mobile Communications

o Network provider
- Protect their network

- Support legacy devices

o User
- Maximize battery life
- Use the network

o (partially) Conflicting preferences

Motivation: Corporate Policy

o Organizations
- List of clients
- Types of data
- Types of users
- Protocols

o Secret attributes

« Don't want to disclose policy unless both
parties have common preferences

Problems in Policy Reconciliation

Unsolvable in the general case
o Parties must have common representation

o Efficient solutions do exist for some
representations O(nlogn)

Participants release their complete policy
- Disclose policy preferences
- Disclose policy attributes

Exposes too much about the participants
What can we do?

Privacy in Policy Reconciliation

o It is possible to guarantee privacy in policy
reconciliation

Policy Representation

« Assume participants use the same format
o Represent policy rules as bit-strings

o They represent which attributes are defined
and which are not

o« Policy is a set of rules; forms a matrix

o Policy rules can be ordered to express
preference

Schedule Policy Example
| Appliant | HR

Mo Tue Wed Thu Fri Mo Tue Wed Thu Fri

Rulel 1 0 0 0 0 0 0 1 0 0
Rule2 0 1 0 0 0 0 1 0 0 0
Rule3 0 0 1 0 0 1 0 0 0 0
Ruled 0 0 0 1 0 0 0 0 1 0
Rule5 0 0 0 0 1 0 0 0 0 1

Threat Model

o Semi-honest - Participants play nicely
- Follow the protocol

o They don't gain info about each others private data
« They only see the output of the protocol

« Malicious - Participants don't play nicely
- Can behave arbitrarily:
o refuse to participate, give bogus data, abort protocol

« They don't gain info about each others private data
« They only see the output of the protocol

Tools

Homomorphic cryptosystem

Given E(a) and E(b) | can calculate E(a+b)
— Efficiently — without breaking the cryptosystem!

Given r and E(a) | can calculate E(r*a)
— Efficiently — without breaking the cryptosystem!
Which means that given the encrypted

coefficients of a P(x), and y and z, | can
efficiently calculate E(y*P(x) + z)

Privacy Goals

o Privacy-preserving policy without preference
« Cardinality: Returns number of common policies

« Common Policy: Returns the policies

o Privacy-preserving policy with preference
o Sum of Ranks: maximizes joint preference order
o Maximized Ranks: maximizes each ones ranks

Cardinality
(0)A,B:y

DA: f,(X)=(X-a)X -ay)..(X-a)= Y aX

)B: f(X)=(X-b)(X -b,).. (X -b) =Y BX’

(3A:E,(a,)— B

(4)B: E,(B) — A
(DA E,(r.fz(a)+y)—B

O)B:E,(r.fs(B)+7y) = A

Common Policy

DA: f,(X)=(X-a)X -ay)..(X-a)= Y aX

QB f(X)=(X -b)(X-by).. X -b)= Y BX'

(3A:E,(a,)— B

4B E,(;) = A
B)A:E, (r.f,(a)+a)—B

0)B: E,(r.f,(b)+p)—=> A

Schedule Policy (Again)
| Appliamt | HR

Mo Tue Wed Thu Fri Mo Tue Wed Thu Fri

Rulel 1 0 0 0 0 0 0 1 0 0
Rule2 0 1 0 0 0 0 1 0 0 0
Rule3 0 0 1 0 0 1 0 0 0 0
Ruled 0 0 0 1 0 0 0 0 1 0
Rule5 0 0 0 0 1 0 0 0 0 1

Sum of Ranks

~ - F
A |

Step 1

Step 2

Step 3

0
§
[\

Step 4

Step 5

K

Step 6

Step 7

Maximized Ranks

o

| >
\w

A A B
AN \ |/

/

K

e

Step 1 Step 2 Step 3 Step 4

Summary so far

o It is possible to do privacy-preserving policy
reconciliation

« Participants can privately:
- Discover if they have common policies

- Discover only the common policies

- Select a policy according to their preferences

Open Directions

o Other privacy-preserving operations on policy
o Other types of ranking/preferences
« Different representation for efficiency

