
Dynamic Data Excavation
or: “Gimme back my symbol table!”

Asia Slowinska

Traian Stancescu

Herbert Bos

VU University Amsterdam

Compilation is pseudo-unbreakable code

irreversibility assumption

Compilation is pseudo-unbreakable code

• Most software available only in binary form

irreversibility assumption

— malware analysis is

difficult

— forensics is difficult

— source gets lost

— we do not know what code

is doing

— we cannot fix it

Goals

Long term : reverse engineer complex software

Goals

Long term : reverse engineer complex software

Goals

Long term : reverse engineer complex software

Goals

struct employee {

char name [128];

int year;

Long term : reverse engineer complex software

int year;

int month;

int day;

};

struct employee*

foo (struct employee* src)

{

struct employee dst;

dst =*src;

return src;

}

Goals

struct employee {

char name [128];

int year;

Long term : reverse engineer complex software

Short term: reverse engineer data structures

int year;

int month;

int day;

};

struct employee*

foo (struct employee* src)

{

struct employee dst;

dst =*src;

return src;

}

Goals

struct s1 {

char f1 [128];

Long term : reverse engineer complex software

Short term: reverse engineer data structures

char f1 [128];

int f2;

int f3;

int f4;

};

struct s1*

foo (struct s1* a1)

{

struct s1 l1;

}

Application I: legacy binary protection

• legacy binaries everywhere

• we suspect they are vulnerable

But…But…

How to protect legacy code from memory corruption?

Answer: find the buffers and make sure that all

accesses to them do not stray beyond array bounds

Application II: binary analysis

• we found a suspicious binary � is it malware?

• a program crashed � investigate

But…But…

Without symbols, what can we do?

Answer: generate the symbols ourselves!

(demo later)

Example I: binary analysis

Why is it difficult?

1. struct employee {

2. char name[128];

3. int year;

4. int month;

5. int day

6. };6. };

7.

8. struct employee e;

9. e.year = 2010;

`

Why is it difficult?

1. struct employee {

2. char name[128];

3. int year;

4. int month;

5. int day

6. };6. };

7.

8. struct employee e;

9. e.year = 2010;

Instr 1

Instr 2

Data structures: key insight

Yes, data is “apparently unstructured”

But usage is not!

Data structures: key insight

Yes, data is “apparently unstructured”

But usage is not!

Data structures: key insight

Yes, data is “apparently unstructured”

But usage is not!

test

KLEE inputs DDE Emu

app

data structures

Intuition

• Observe how memory

is used at runtime to

detect data structures

• E.g., if A is a pointer…

2. and A is an address of a

structure, then *(A + 8) is

perhaps a field in this structure

field0

field1

field2

field3

A

1. and A is a function frame pointer,

then *(A + 8) is perhaps a

function argument

3. and A is an address of an

array, then *(A + 8) is perhaps

an element of this array

parent EBP

return addr

fun arg1

fun arg2

A elem2

elem3

elem4

elem5

elem0

elem1

A

Approach

• Track pointers

– find root pointers

– track how pointers derive from each other

• for any address B=A+8, we need to know A.• for any address B=A+8, we need to know A.

• Challenges:

– missing base pointers

• for instance, a field of a struct on the stack may be

updated using EBP rather than a pointer to the struct

– multiple base pointers

• e.g., normal access and memset()

Arrays are tricky

• Detection:

– looks for chains of accesses in a loop

Arrays are tricky

• Detection:

– looks for chains of accesses in a loop

Arrays are tricky

• Detection:

– looks for chains of accesses in a loop

Arrays are tricky

• Detection:

– looks for chains of accesses in a loop

– and sets of accesses with same base

in linear space

Interesting challenges

• Example:

– Decide which accesses

are relevant

• Problems caused by

e.g., memset-like

array 1 array 2structure

e.g., memset-like

functions

Reported by memset

Challenges

• Arrays

– Nested loops

– Consecutive loops

– Boundary elements

Final mapping

• map access patterns to data structures

– static memory : on program exit

– heap memory : on free

– stack frames : on return– stack frames : on return

What about semantics?

Semantics: key insight

Yes, data is “apparently unstructured”

But usage is not!

Usage (again) reveals semanticsUsage (again) reveals semantics

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

Usage (again) reveals semanticsUsage (again) reveals semantics

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

Usage (again) reveals semanticsUsage (again) reveals semantics

Semantics: key insight

Yes, data is “apparently unstructured”

But usage is not!

Propagate types from sources + sinks

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

Propagate types from sources + sinks

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

Propagate types from sources + sinks

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

Propagate types from sources + sinks

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

Propagate types from sources + sinks

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

open (“Herbert.doc”, R_ONLY)

Propagate types from sources + sinks

Semantics: key insights

Yes, data is “apparently unstructured”

But usage is not!

open (“Herbert.doc”, R_ONLY)

Propagate types from sources + sinks

Results

Results

Results

Results

Results

Results

Results

Results

Results

Results

Results

Results

Results

• consolidate Systems Security research in Europe

• promote cybersecurity education

• identify threats and vulnerabilities of the

Current and Future Internet

EU FP7 Network of Excellence

in Systems Security

Current and Future Internet

• create active research roadmap in the area

• develop a joint working plan to conduct State-

of-the-Art collaborative research.

Conclusions

• We can recover data structures by tracking

memory accesses

• We believe we can protect legacy binaries

• We need to work on data coverage • We need to work on data coverage

http://www.cs.vu.nl/~herbertb/papers/trdatastruct-ir-cs-57.pdf

http://www.few.vu.nl/~asia/papers/pdf_files/dde_tr10.pdf

More details

asia@dolphin:~/vu/dynamit_instrumented_binaries/wget$ file wget.gdb

wget.gdb: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses

shared libs), for GNU/Linux 2.6.15, stripped

asia@dolphin:~/vu/dynamit_instrumented_binaries/wget$ gdb -q wget.gdb

Reading symbols from /home/asia/vu/dynamit_instrumented_binaries/wget/wget.gdb...done.

(gdb) b *0x805adb0

Breakpoint 1 at 0x805adb0

(gdb) run www.google.com

[Thread debugging using libthread_db enabled][Thread debugging using libthread_db enabled]

--2010-09-27 15:33:44-- http://www.google.com/

Breakpoint 1, 0x0805adb0 in function0 ()

(gdb)

(gdb) info scope function0

Scope for function0:

Symbol variables_function0 is a variable with complex or multiple locations (DWARF2), length

152.

(gdb) print variables_function0

$1 = {field_4_bytes_0 = 0, field_4_bytes_1 = 0, pointer_struct_hostent_0 = 0xbfffeaf0,

field_8_bytes_0_unused = 579558798248313200, pointer_char_0 = 0x2cfb14 "\274\t",

field_in_addr_t_0 = -1073745296,

pointer_struct_1_0 = 0x0, field_1_byte_0_unused = 0 '\000', field_1_byte_0 = 0 '\000',

field_1_byte_1 = 0 '\000', field_8_bytes_1_unused = -4611706891964220672,

inetaddr_string_0 = 0x80b0170 "www.google.com", field_4_bytes_2 = 0}

(gdb) watch variables_function0.pointer_struct_1_0(gdb) watch variables_function0.pointer_struct_1_0

Hardware watchpoint 2: variables_function0.pointer_struct_1_0

(gdb) continue

Resolving www.google.com... Hardware watchpoint 2: variables_function0.pointer_struct_1_0

Old value = (struct struct_1 *) 0x0

New value = (struct struct_1 *) 0x80b2678

0x0805af5f in function0 ()

(gdb)

(gdb) print /x *variables_function0.pointer_struct_1_0

$2 = {field_4_bytes_0 = 0x3, pointer_struct_0_0 = 0x80b2690, field_int_0 = 0x0, field_1_byte_0 = 0x0,

field_4_bytes_1 = 0x0}

(gdb) print /x *variables_function0.pointer_struct_1_0.pointer_struct_0_0

$3 = {field_4_bytes_0 = 0x2, field_in_addr_t_0 = 0x634d7d4a}

(gdb) print (char*) inet_ntoa(variables_function0.pointer_struct_1_0.pointer_struct_0_0.field_in_addr_t_0)

$4 = 0xb7fe46a0 "74.125.77.99"

(gdb) print malloc_usable_size(variables_function0.pointer_struct_1_0.pointer_struct_0_0)

/sizeof(*variables_function0.pointer_struct_0_0)

$5 = 3

(gdb) print /x variables_function0.pointer_struct_1_0.pointer_struct_0_0[1]

$6 = {field_4_bytes_0 = 0x2, field_in_addr_t_0 = 0x684d7d4a}$6 = {field_4_bytes_0 = 0x2, field_in_addr_t_0 = 0x684d7d4a}

(gdb) print (char*) inet_ntoa(variables_function0.pointer_struct_1_0.pointer_struct_0_0[1].field_in_addr_t_0)

$7 = 0xb7fe46a0 "74.125.77.104"

(gdb) print /x variables_function0.pointer_struct_1_0.pointer_struct_0_0[2]

$8 = {field_4_bytes_0 = 0x2, field_in_addr_t_0 = 0x934d7d4a}

(gdb) print (char*) inet_ntoa(variables_function0.pointer_struct_1_0.pointer_struct_0_0[2].field_in_addr_t_0)

$9 = 0xb7fe46a0 "74.125.77.147"

(gdb)

