Mitigating Cyber Attacks

Magnus Almgren
Göteborg, 2010-11-17

Postdoc, finansierad av MSB
15—20 years ago...

- Internet starting to reach a wider audience
 - most people did not have emails
 - computer security – an afterthought
- The typical hacker, often portrayed as
 - teenager,
 - attack a "chess game"
 - goal: some esoteric fame ...
- And today?
Outline

• Status today
 – News clips (if you do not believe in me ...)

• Monitoring traffic
 – Intrusion Detection Systems

• Research Activities
 – Reasoning with alerts from several sensors
 – Monitoring backbone traffic

• European network: SysSec
Malicious Code

• Many users say:
 I would never download unsecure content!
• But what type of content is safe?
Targeted attacks

- 48% of exploits target Adobe Acrobat / Adobe Reader
- Adobe begins a quarterly patch cycle
- Health Check statistics show that Adobe Reader is among the top unsecured applications
Dangerous People (!!!)

Cameron Diaz Searches Yield Ten Percent Chance of Landing on a Malicious Site

http://home.mcafee.com/AdviceCenter/most-dangerous-celebrities
Cyberattack on Google Said to Hit Password System

By JOHN MARKOFF

Ever since Google disclosed in January that Internet intruders had stolen information from its computers, the exact nature and extent of the theft has been a closely guarded company secret. But a person with direct knowledge of the investigation now says that the losses included one of Google’s crown jewels, a password system that controls access by millions of users worldwide to almost all of the company’s Web services, including e-mail and business applications.

The program, code named Gaia for the Greek goddess of the earth, was attacked in a lightning raid taking less than two days last December, the person said. Described publicly only once at a technical conference four years ago, the software is intended to enable users and employees to sign in with their password just once to operate a range of services.
Researchers Fight to Keep Implanted Medical Devices Safe from Hackers

Neal Leavitt

Implantable medical devices have become increasingly popular, and a growing number are equipped with wireless communications technology to increase their usefulness. However, this could make the devices susceptible to hackers.

Implantable medical devices—such as insulin pumps, cardiac pacemakers, and cardiac defibrillators—have become increasingly popular since being introduced about 50 years ago. In the US alone, 2.6 million people have an implantable medical device, according to the American Medical Device Association (AMDA).

A research scientist at the US Department of Energy’s Oak Ridge National Laboratory (ORNL)

All this convenience may come with unanticipated risks: the possibility that hackers could break into IMDs’ communications and manipulate them.

However, the risk is growing, as is the number of patients using IMDs in part because of the aging of the population.

“The time to prevent future attack scenarios is now,” said Paul.

“Hacking a medical device—especially an implantable one—could have serious consequences,” said Paul.
Malware link to air crash inconclusive

By Vivian Yeo, ZDNet Asia on August 30, 2010 (4 hours 44 minutes ago)

Although malware was recently identified as a contributing factor in a Spanair crash two years ago, it is still too early to draw definite conclusions or panic over possible links to cyberterrorism, security experts say.

A Spanish newspaper reported that the airline’s central computer had been infected with Trojans at the time of the disaster, causing a failure to flag technical faults. Spanair’s flight JK 5022, which was said to have taken off with flaps and slats on its wings retracted, crashed shortly after takeoff killing 154 people.

Findings by independent air crash investigators indicated that apart from human oversight, the failure of the system to trigger alerts of the problems led to the tragic incident.

Paul Ducklin, Sophos' head of technology for the Asia-Pacific region, told ZDNet Asia in an e-mail interview, this is possibly the first case of malware being mentioned in relation to a plane crash. However, to what extent the infection contributed to the crash is "not yet clear" as more details of the investigation will only be released in December, Ducklin pointed out.

Whilst there may be public anxiety over just how safe aircraft and airline systems are in the wake of the report, he said carriers and travelers should not be overly concerned about the role of cyberterrorism or cyberwarfare.

"The word 'cyberwarfare' is on a lot of lips lately...so anything which might tie malware and, by association, cyberwarfare into the area of civilian aviation sounds as though it is worth worrying about," he said.
Hacker Disables More Than 100 Cars Remotely
By Kevin Poulsen | March 17, 2010 | 1:52 pm | Categories: Breaches, Crime, Cybersecurity, Hacks and Cracks

More than 100 drivers in Austin, Texas found their cars disabled or the horns honking out of control, after an intruder ran amok in a web-based vehicle-immobilization system normally used to get the attention of consumers delinquent in their auto payments.

Police with Austin’s High Tech Crime Unit on Wednesday arrested 20-year-old Omar Ramos-Lopez, a former Texas Auto Center employee who was laid off last month, and allegedly sought revenge by bricking the cars sold from the dealership’s four Austin-area lots.

“We initially dismissed it as mechanical failure,” says Texas Auto Center manager Martin Garcia. “We started having a rash of up to a hundred customers at one time complaining. Some customers complained of the horns going off in the middle of the night. The only option they had was to remove the battery.”

The dealership used a system called Webtech Plus as an alternative to repossessing vehicles that haven’t been paid for. Operated by Cleveland-based Pay Technologies, the system lets car dealers install a small black box under vehicle dashboards that responds to commands issued through a control computer.
'Sinister' Integral Energy virus outbreak a threat to power grid

Asher Moses
October 1, 2009

A virus outbreak is wreaking havoc with Integral Energy's computer network, forcing it to rebuild all 1000 of its desktop computers before the "particularly sinister" bug spreads to the machines controlling the power grid.

A spokesman for Integral Energy, a major energy supplier, confirmed that the company had called in external information security experts to "rebuild all desktop computers to contain and remove the virus".

The malware had not affected power supplies to customers or business data and was "contained within Integral Energy's information technology network". the spokesman said.
Estonia Computers Blitzed, Possibly by the Russians

By STEVEN LEE MYERS
Published: May 19, 2007

MOSCOW, May 18 — The computer attacks, apparently originating in Russia, first hit the Web site of Estonia's prime minister on April 27, the day the country was mired in protest and violence. The president's site went down, too, and soon so did those of several departments in a wired country that touts its paperless government and likes to call itself E-stonia.

Then the attacks, coming in waves, began to strike newspapers and television stations, then schools and finally banks, raising fears that what was initially a nuisance could have economic consequences.

The attacks have peaked and tapered off since then, but they have not ended, prompting officials there to declare Estonia the first country to fall victim to a virtual war.

“If you have a missile attack against, let's say, an airport, it is an act of war,” a spokesman for the Estonian Defense Ministry, Madis Mikko, said Friday in a telephone interview. “If
New Era 2010: Stuxnet

- Advanced Malware
 - target specifically Programmable Logic Controllers: Siemens SIMATIC Step 7 software
 - Lots of rumors of goal and who creators
 - designed and released by a government
 - the U.S. or Israel ?
 - Target: Bushehr nuclear power plant in Iran (60% of infected hosts in Iran)

Symantec oct-2010: W32.Stuxnet Dossier (http://goo.gl/pP7S)
Stuxnet: Pandora’s box?

- Stuxnet is advanced and one of the first wild malware’s targeting PLCs.
 - 6—8 people about 6 months to create.
- PLCs exists in many industries
 - factory assembly lines, amusement rides, or lighting fixtures.

now blueprint to create malware targeting PLCs

- Compare this with the *Loveletter* virus (2000)
 - 2003/11 there existed 82 different variants of *Loveletter*.
 - It is claimed that more than 5,000 attacks are carried out every day.
Status today

Monitoring traffic: Intrusion Detection Systems

Research Activities
This is an "Attack."
Snorby Dashboard

Severity Statistics
- High Severity: 22 Events
- Medium Severity: 158 Events
- Low Severity: 52 Events

Event Statistics
- Total Event Count: 232 Events
- Unique Event Types: 74
- Unique Addresses: 8

Event Severity Graphs

Sensor Information:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Hostname</th>
<th>Interface</th>
<th>Encoding</th>
<th>Last Event</th>
<th>Event Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.16.192.122</td>
<td>en1</td>
<td>hex</td>
<td>110</td>
<td>8.62%</td>
</tr>
<tr>
<td>2</td>
<td>10.0.1.5</td>
<td>en1</td>
<td>hex</td>
<td>215</td>
<td>91.38%</td>
</tr>
</tbody>
</table>

Event Category Information:

<table>
<thead>
<tr>
<th>Event Category</th>
<th>Event Count For Category</th>
<th>Event Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-application-attack</td>
<td>22 Events</td>
<td>9.48%</td>
</tr>
<tr>
<td>Unclassified</td>
<td>50 Events</td>
<td>21.53%</td>
</tr>
<tr>
<td>misc-attack</td>
<td>34 Events</td>
<td>14.66%</td>
</tr>
<tr>
<td>bad-unknown</td>
<td>7 Events</td>
<td>3.02%</td>
</tr>
<tr>
<td>attempted-recon</td>
<td>65 Events</td>
<td>28.02%</td>
</tr>
<tr>
<td>web-application-activity</td>
<td>52 Events</td>
<td>22.41%</td>
</tr>
<tr>
<td>misc-activity</td>
<td>2 Events</td>
<td>0.86%</td>
</tr>
</tbody>
</table>
WEB-CGI faqmanager.cgi arbitrary file access attempt

Relevance info:

EMA-5: 39.0
EMA-10: 39.0
EMA-20: 39.0

Payload:

Show Ascii - Show Ascii Hex

```
00000000: 47 45 54 20 2f 63 67 69 62 6f 6e 73 74 61 74 69 3f 74 6f 62 6a 61 76 65 72 61 74 69 63 65 3f
00000014: 73 65 74 20 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f
00000028: 6e 61 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61
0000003c: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
00000050: 74 61 74 75 70 20 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63
00000064: 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61
00000078: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
0000008c: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
000000a0: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
000000b4: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
000000c8: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
000000dc: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
000000f0: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
00000104: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
00000118: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
0000012c: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
00000140: 74 61 74 75 70 20 63 6f 6e 74 65 72 61 74 69 63 65 2f 73 74 61 74 75 70 20 63 6f 6e 74 65 72 61
```

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Status today
Monitoring traffic

*Research Activities:*

1. Reasoning with alerts from several sensors
2. Monitoring backbone traffic
Scenario multiple sensors (1)

- Normal phishing access (no attack)
  - $P(\text{inv-A} \mid ...) = 0.20 = \text{don’t investigate}$
Scenario multiple sensors (2)

- Normal phf access (no attack)
  - \( P(\text{inv-A} | \ldots) = 0.20 = \text{don't investigate} \)
Scenario multiple sensors (3)

- Normal phf access (no attack)
  - $P(\text{inv-A} \mid \ldots) = 0.20 = \text{don’t investigate}

- **Snort sensor defunct, this may be an attack!**
  - $P(\text{inv-A} \mid \ldots) = 0.54 = \text{investigate}$
  - $P(w^1 \mid \ldots) = 0.01 = \text{sensor broken}$
Analysis of malicious backbone traffic

• Looking for attacks on a backbone network
  – 10 Gbps (=fast!)
  – Problems:
    • speed of network link
    • amount of data
    • routing
    • user privacy – anonymize data(!)
Measurement Setup (simplified)

SUNET

Nordunet and the rest of the world

Router

Measure
Measurement Setup (simplified)

SUNET

Router

Router

Nordunet
and the rest of the world

Measure
Measurement Setup (simplified)

SUNET

Router

Router

Nordunet and the rest of the world

Measure
Measurement Setup (simplified)

SUNET

Nordunet and the rest of the world

Router

Router

Measure
Measurement Setup (simplified)

SUNET

Nordunet and the rest of the world

Router

Router

Measure
Statistics

• 23,600 *inside hosts* initiating communication with 18,780,894 on the outside.

• 24,587,096 *outside hosts* trying to reach (scan) 970,149 inside hosts.
Flow Output from CoralReef

- Unidirectional flows: 5-tuple

<table>
<thead>
<tr>
<th>srcIP</th>
<th>destIP</th>
<th>proto</th>
<th>ok</th>
<th>sport</th>
<th>dport</th>
<th>pkts</th>
<th>bytes</th>
<th>flows</th>
<th>firstTS</th>
<th>lastTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>src¹</td>
<td>dst¹</td>
<td>6</td>
<td>1</td>
<td>445</td>
<td>3995</td>
<td>3</td>
<td>120</td>
<td>1</td>
<td>t₀¹</td>
<td>t₁¹</td>
</tr>
<tr>
<td>src²</td>
<td>dst²</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>t₀²</td>
<td>t₁²</td>
</tr>
</tbody>
</table>

- Data collected over a 6-week period (spring)
- IP addresses anonymized
Analysis of backbone data
Analysis of backbone data
Analysis of backbone data
Analysis of backbone data
Host-A: The Scanner

April 1: 2967 probed
Host-A: The Scanner

host-A:6000 ← victim:2967
(1 pkt, 40 bytes)

April 1: 2967 probed
April 8: 2967 probed

port 2967
Host-A: The Scanner

- host-A:6000 ← victim:2967
  (1 pkt, 40 bytes)

April 1: 2967 probed
April 8: 2967 probed
April 15: 2967 (51%), 135 (39%), 1617, 3230
Host-A: The Scanner

April 1: 2967 probed
April 8: 2967 probed
April 15: 2967 (51%), 135 (39%), 1617, 3230
April 22: 2967 (21%), 135 (79%)
Host-A: The Scanner

April 1: 2967 probed
April 8: 2967 probed
April 15: 2967 (51%), 135 (39%), 1617, 3230
April 22: 2967 (21%), 135 (79%)
April 29: 2967 (single conn.)
Host-A: The Scanner

host-A:6000 ← victim:2967
(1 pkt, 40 bytes)

April 1: 2967 probed
April 8: 2967 probed
April 15: 2967 (51%), 135 (39%), 1617, 3230
April 22: 2967 (21%), 135 (79%)
April 29: 2967 (single conn.)
May 5: 2967 (single), 135 (99%)
Host-A: The Scanner

April 1: 2967 probed
April 8: 2967 probed
April 15: 2967 (51%), 135 (39%), 1617, 3230
April 22: 2967 (21%), 135 (79%)
April 29: 2967 (single conn.)

May 5: 2967 (single), 135 (99%)
Host-A: The Scanner

host-A:6000 ← victim:2967
(1 pkt, 40 bytes)

April 1: 2967 probed
April 8: 2967 probed
April 15: 2967 (51%), 135 (39%), 1617, 3230
April 22: 2967 (21%), 135 (79%)
April 29: 2967 (single conn.)

May 5: 2967 (single), 135 (99%)
April 22:

Host-A: The Scanner

host-A:6000 ← victim:2967

(1 pkt, 40 bytes)
Host-A: The Scanner

host-A:6000 ← victim:2967
(1 pkt, 40 bytes)

April 22:

host-A:6000 ← victim: 2967
(1 pkt, 60 bytes)

port 2967
Host-A: The Scanner

April 22:

host-A:6000 ← victim:2967
(1 pkt, 60 bytes)

host-A:6000 ← victim: 2967
(1 pkt, 60 bytes)
Host-A: The Scanner

**April 22:**

- host-A:6000 \(\leftarrow\) victim:2967
  - (1 pkt, 60 bytes)

- host-A:6000 \(\leftarrow\) victim:2967
  - (1 pkt, 60 bytes)

- host-A:1143 \(\leftarrow\) victim:2967
  - (927 pkts, 48,212 bytes)

- port 2967
Timing Behavior of Malicious Hosts
Timing Behavior of Malicious Hosts
Timing Behavior of Malicious Hosts

\[
\begin{align*}
  x_0 &= t_1 - t_0 \\
  x_1 &= t_2 - t_1 \\
  x_2 &= t_3 - t_2 \\
  x_3 &= t_4 - t_3
\end{align*}
\]
Timing Behavior of Malicious Hosts

$$x_0 = t_1 - t_0$$
$$x_1 = t_2 - t_1$$
$$x_2 = t_3 - t_2$$
$$x_3 = t_4 - t_3$$
Timing Behavior of Malicious Hosts

Simple refresh: once every 43min (once every 30 min)
Timing Behavior of Malicious Hosts

Exponential backoff: 111s, 222s, 333s, 666s, 1332s, 2664s
Identifying **SPAM** from data traffic

Legitimate email (Ham)  
Unsolicited email (Spam)
A European Network of Excellence in Managing Threats and Vulnerabilities in the Future Internet

- a Network of Excellence (2010-2014)
- To work towards solutions and collaborate
  - At a European level
    - Poli. di Milano (IT)
    - Vrije Universiteit (NL)
    - Institute Eurecom (FR)
    - IPP (Bulgaria)
    - TU Vienna (Austria)
    - Chalmers U (Sweden)
    - UEKAE (Turkey)
    - FORTH – ICS (Greece)
  - and with international colleagues around the world

http://www.syssec-project.eu/
Links

• **SVT Documentary oct-2010:**
  – Att hacka en stormakt (http://goo.gl/1Zrd)

• **Symantec oct-2010:**
  – W32.Stuxnet Dossier (http://goo.gl/pP7S)

• **Uppdrag granskning oct-2010:**
  – Kapade nätverk (http://svt.se/granskning)
  – SysSec: http://www.syssec-project.eu/