A Practical Approach for Generic
Bootkit Detection and Prevention

Bernhard Grill, Christian Platzer, Jurgen Eckel
Vienna University of Technology, IKARUS Security
Software GmbH

bgrill@seclab.tuwien.ac.at

* Master student at the Secure Systems Lab @
Vienna University of Technology -
http://www.iseclab.org/people/bgrill/

* Still ongoing research — preliminary results

* Feedback | improvement ideas / discussion
IS very welcome! :)

Background (Objectives, Boot Process,
Bootkits)

System Overview & Detection Heuristics
Implementation

Preliminary Evaluation

Limitations & Evasion Techniques

Future Work & Open Questions

http://www.iseclab.org/people/bgrill/

Background
- Objectives

- Boot Process

- Bootkits

* Develop system to detect and prevent bootkit
attacks

* Integrate with existing security measures like
DEP, ASLR, AV, IDS,...

* Capable of detecting 0-days

boot process overview on BIOS / MBR based
systems

“Bootkit” is a combination of the terms “boot” and “rootkit”

Bootkits are a very aggressive kind of malware deeply
Infecting the system

Bootkits interfere with the boot process to gain control before
the kernel starts (and is able to protect itself)

Target is to infect the kernel and gain kernel-level privileges

hard disk

r boot partition

l—ﬂ

512 byles arbltrary size | 512 byle arbltrary size arbmary size uptn 8192 bytes Iarl}itraryr si?_eI
N N

boot process with infected bootloader (BL)

System Overview &
Used Detection Heuristics

* System consists of two major components (driver,
detection engine)

* Driver triggers detection engine on write requests to
hard disk areas containing boot code or data

* Engine emulates and monitors the system boot
process during normal system operation

notifies

reads boot
config & code

Computer

restores boot data

1) Disk access heur: bootkits store config & code at the end
of the hard disk — we define loading content from the
disk's end during boot process as malicious

2) Self-modifying code heur: self-modifying code is
prohibited

3) Decryption routine heur: loops with large iteration
counts performing certain instructions are prohibited

4) Hook heur: Modifying the interrupt vector table (IVT)
during boot process is forbidden. To the best of our
knowledge, this step is mandatory for bootkits.

Implementation

* Implemented the system for Windows

* Kernel-level driver + user-land detection engine
based on a custom system emulator

* Whitelisting for benign boot processes to avoid
false-positives

* System partially implemented

* Driver PoC
* Necessary emulator adoptions finished

* Finished heuristics: decryption loop heur, disk
read access heur, hooking heur

* Todo: self modifying code heur, recovery module

Preliminary Evaluation

- Driver Performance Evaluation
- Engine Evaluation

- Decryption Loop Filter

- Disk Read Request Filter

5.06 GiB copy time without driver

19:57

5.06 GiB copy time with driver 20:09
Performance overhead 1.0%
Handled read requests (copy) 140511
Handled write requests (copy) 128724
Handled read requests (IDLE) H9
Handled write requests (IDLE) 409

Table 1: Overview on the performance measurement

results for the driver.

* Leaked Carberp bootkit was used for first evaluation
* Let's check the results of the implemented heuristics
— Decryption loop filter

— Disk read access filter

printing potential decryption loop info
loop entry point: HxddBAABCc?
loop exit point: BxdBAABea

printing loop iteration information:

loop iteration counter: 1217
instruction count of loop iteration: 7

inting instructions:

d8c9: 33c2 Xop AX. DA

di8ch: 263785 moy [ES:=DI1. AX 2fAA:B8ca
dBce: 83coB2 add) [©

dBdi: 83c7A2 add DI. B2

BxddBd8d4: e212 loop died

Bxd@Bd8ed: 3hA4 mou AX,. [D5:5I1 : AddA:A344

BxddAdBea: ehdd Jmp d8c?
potential decryption loop info end

decryption loop heuristic output

printing potential malicious disk read requests
ize of hard dizk in szectors 31457288 (15 GB>

alicious read requests within the last 18 percent of the disk
tarting malicious sector iz 28311481 <13.5 GB>

umbher of sectors to read: 127
tart sector to read: 31438339
arget address to store content: BxB5cHBBBAA

umbher of sectors to read: Y3
tart sector to vead: 31430466
arget address to store content: Hx?5aBBU88

potential malicious disk read requests end

disk read request heuristic output

Limitations & Evasion
Techniques

* No UEFI support -> fundamentally different from
BIOS/MBR boot process

* No GPT (GUID Partition Table) support yet -> will be
Included later

* BIOS- and Hive-based bootkits not detected (but
they are very rare)

* Driver | engine detection by full disk search (before
Infection)

* Driver | engine removal (assuming sufficient
permissions & system restart) — self protection

* Environment detection during emulation (CPU,
HDD model,...)

* Instruction counter exhausting (due to limited
amount of emulated instructions) — emulate until
kernel starts

* Disk read access heur: store bootkits’ code and
data in unsuspicious areas, e.g. not at hdd‘s end
(risky, due to accidential overwrites by OS)

* Self-modifying code & decryption loop heur: refrain
from using such code -> prone to pattern-based
detection

* Interrupt hook filter: to the best of our knowledge,
every bootkit performs interrupt hooking to
regain control after executing original code ->
conjecture part of future work

Future Work & Open Questions

Implement missing parts

Perform larger evaluation with different malware
families

Check whether every bootkit relies on interrupt
hooking

Check whether benign boot processes trigger
false positives -> if not, remove white-listing

* Developed bootkit detection & prevention
engine

* Based on boot process emulation and virtual
machine introspection (VMI) to separate
benign form malicious boot processes

* Prepared a demo if you're interested

* How to detect self-modifying code in x86? No,
checking w+x on memory is not sufficient :)

Questions?

bgrill@seclab.tuwien.ac.at

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

