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About This Talk

● Master student at the Secure Systems Lab @ 
Vienna University of Technology → 
http://www.iseclab.org/people/bgrill/

● Still ongoing research → preliminary results

● Feedback / improvement ideas / discussion 
is very welcome! :)



Outline

● Background (Objectives, Boot Process, 
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http://www.iseclab.org/people/bgrill/


Background
- Objectives
- Boot Process
- Bootkits



Objectives

● Develop system to detect and prevent bootkit 
attacks

● Integrate with existing security measures like 
DEP, ASLR, AV, IDS,…

● Capable of detecting 0-days



Boot Process Overview

 

boot process overview on BIOS / MBR based 
systems



Bootkits

● “Bootkit” is a combination of the terms “boot” and “rootkit”

● Bootkits are a very aggressive kind of malware deeply 
infecting the system 

● Bootkits interfere with the boot process to gain control before 
the kernel starts (and is able to protect itself) 

● Target is to infect the kernel and gain kernel-level privileges



Bootkit Behavior

 

boot process with infected bootloader (BL)



  System Overview & 
  Used Detection Heuristics



System Overview

●  System consists of two major components (driver,         
 detection engine)

● Driver triggers detection engine on write requests to 
hard disk areas containing boot code or data

● Engine emulates and monitors the system boot 
process during normal system operation



System Overview



Used Detection Heuristics

1) Disk access heur: bootkits store config & code at the end    
  of the hard disk → we define loading content from the      
  disk's end during boot process as malicious

2) Self-modifying code heur: self-modifying code is                
  prohibited

3) Decryption routine heur: loops with large iteration              
  counts performing certain instructions are prohibited

4) Hook heur: Modifying the interrupt vector table (IVT)       
  during boot process is forbidden. To the best of our              
  knowledge, this step is mandatory for bootkits.



 Implementation



Implementation

● Implemented the system for Windows

● Kernel-level driver + user-land detection engine 
based on a custom system emulator

● Whitelisting for benign boot processes to avoid 
false-positives



Implementation

● System partially implemented

• Driver PoC

• Necessary emulator adoptions finished

• Finished heuristics: decryption loop heur, disk 
read access heur, hooking heur

• Todo: self modifying code heur, recovery module



Preliminary Evaluation
- Driver Performance Evaluation
- Engine Evaluation

- Decryption Loop Filter
- Disk Read Request Filter



Driver Performance 
Evaluation



Engine Evaluation

● Leaked Carberp bootkit was used for first evaluation

● Let's check the results of the implemented heuristics

– Decryption loop filter

– Disk read access filter



 

decryption loop heuristic output

Engine Evaluation



 

disk read request heuristic output

Engine Evaluation



Limitations & Evasion 
Techniques



Limitations

● No UEFI support -> fundamentally different from 
BIOS/MBR boot process

● No GPT (GUID Partition Table) support yet -> will be 
included later

● BIOS- and Hive-based bootkits not detected (but 
they are very rare)



Evasion Techniques

● Driver / engine detection by full disk search (before 
infection)

● Driver / engine removal (assuming sufficient 
permissions & system restart) → self protection

● Environment detection during emulation (CPU, 
HDD model,…)

● Instruction counter exhausting (due to limited 
amount of emulated instructions) → emulate until 
kernel starts



Evasion Techniques on 
Heuristics

● Disk read access heur: store bootkits‘ code and 
data in unsuspicious areas, e.g. not at hdd‘s end 
(risky, due to accidential overwrites by OS)

● Self-modifying code & decryption loop heur: refrain 
from using such code -> prone to pattern-based 
detection

● Interrupt hook filter: to the best of our knowledge, 
every bootkit performs interrupt hooking to 
regain control after executing original code -> 
conjecture part of future work



Future Work & Open Questions



Future Work

● Implement missing parts

● Perform larger evaluation with different malware 
families

● Check whether every bootkit relies on interrupt 
hooking

● Check whether benign boot processes trigger 
false positives -> if not, remove white-listing



Conclusion

● Developed bootkit detection & prevention 
engine

● Based on boot process emulation and virtual 
machine introspection (VMI) to separate 
benign form malicious boot processes

● Prepared a demo if you're interested  



Open Questions

● How to detect self-modifying code in x86? No, 
checking w+x on memory is not sufficient :)



Questions?

bgrill@seclab.tuwien.ac.at
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