
A Practical Approach for Generic
Bootkit Detection and Prevention

Bernhard Grill, Christian Platzer, Jürgen Eckel
Vienna University of Technology, IKARUS Security

Software GmbH

bgrill@seclab.tuwien.ac.at

About This Talk

● Master student at the Secure Systems Lab @
Vienna University of Technology →
http://www.iseclab.org/people/bgrill/

● Still ongoing research → preliminary results

● Feedback / improvement ideas / discussion
is very welcome! :)

Outline

● Background (Objectives, Boot Process,
Bootkits)

● System Overview & Detection Heuristics

● Implementation

● Preliminary Evaluation

● Limitations & Evasion Techniques

● Future Work & Open Questions

http://www.iseclab.org/people/bgrill/

Background
- Objectives
- Boot Process
- Bootkits

Objectives

● Develop system to detect and prevent bootkit
attacks

● Integrate with existing security measures like
DEP, ASLR, AV, IDS,…

● Capable of detecting 0-days

Boot Process Overview

boot process overview on BIOS / MBR based
systems

Bootkits

● “Bootkit” is a combination of the terms “boot” and “rootkit”

● Bootkits are a very aggressive kind of malware deeply
infecting the system

● Bootkits interfere with the boot process to gain control before
the kernel starts (and is able to protect itself)

● Target is to infect the kernel and gain kernel-level privileges

Bootkit Behavior

boot process with infected bootloader (BL)

 System Overview &
 Used Detection Heuristics

System Overview

● System consists of two major components (driver,
 detection engine)

● Driver triggers detection engine on write requests to
hard disk areas containing boot code or data

● Engine emulates and monitors the system boot
process during normal system operation

System Overview

Used Detection Heuristics

1) Disk access heur: bootkits store config & code at the end
 of the hard disk → we define loading content from the
 disk's end during boot process as malicious

2) Self-modifying code heur: self-modifying code is
 prohibited

3) Decryption routine heur: loops with large iteration
 counts performing certain instructions are prohibited

4) Hook heur: Modifying the interrupt vector table (IVT)
 during boot process is forbidden. To the best of our
 knowledge, this step is mandatory for bootkits.

 Implementation

Implementation

● Implemented the system for Windows

● Kernel-level driver + user-land detection engine
based on a custom system emulator

● Whitelisting for benign boot processes to avoid
false-positives

Implementation

● System partially implemented

• Driver PoC

• Necessary emulator adoptions finished

• Finished heuristics: decryption loop heur, disk
read access heur, hooking heur

• Todo: self modifying code heur, recovery module

Preliminary Evaluation
- Driver Performance Evaluation
- Engine Evaluation

- Decryption Loop Filter
- Disk Read Request Filter

Driver Performance
Evaluation

Engine Evaluation

● Leaked Carberp bootkit was used for first evaluation

● Let's check the results of the implemented heuristics

– Decryption loop filter

– Disk read access filter

decryption loop heuristic output

Engine Evaluation

disk read request heuristic output

Engine Evaluation

Limitations & Evasion
Techniques

Limitations

● No UEFI support -> fundamentally different from
BIOS/MBR boot process

● No GPT (GUID Partition Table) support yet -> will be
included later

● BIOS- and Hive-based bootkits not detected (but
they are very rare)

Evasion Techniques

● Driver / engine detection by full disk search (before
infection)

● Driver / engine removal (assuming sufficient
permissions & system restart) → self protection

● Environment detection during emulation (CPU,
HDD model,…)

● Instruction counter exhausting (due to limited
amount of emulated instructions) → emulate until
kernel starts

Evasion Techniques on
Heuristics

● Disk read access heur: store bootkits‘ code and
data in unsuspicious areas, e.g. not at hdd‘s end
(risky, due to accidential overwrites by OS)

● Self-modifying code & decryption loop heur: refrain
from using such code -> prone to pattern-based
detection

● Interrupt hook filter: to the best of our knowledge,
every bootkit performs interrupt hooking to
regain control after executing original code ->
conjecture part of future work

Future Work & Open Questions

Future Work

● Implement missing parts

● Perform larger evaluation with different malware
families

● Check whether every bootkit relies on interrupt
hooking

● Check whether benign boot processes trigger
false positives -> if not, remove white-listing

Conclusion

● Developed bootkit detection & prevention
engine

● Based on boot process emulation and virtual
machine introspection (VMI) to separate
benign form malicious boot processes

● Prepared a demo if you're interested

Open Questions

● How to detect self-modifying code in x86? No,
checking w+x on memory is not sufficient :)

Questions?

bgrill@seclab.tuwien.ac.at

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

