A Connection Pattern-based Approach to Detect Network Traffic Anomalies in Critical Infrastructures

Béla Genge¹, Dorin Adrian Rusu², Piroska Haller¹

¹ "Petru Maior" University of Tîrgu Mureş, Romania
 ² VU University Amsterdam, The Netherlands
 e-mail: bela.genge@ing.upm.ro, d.rusu@student.vu.nl, phaller@upm.ro

April 13, 2014

- Introduction Critical Infrastructures
- Research motivation
- Proposed approach: SPEAR
- Experimental assessment
- Conclusions and future work

Critical Infrastructures (CI)

The term Critical Infrastructure (CI) underlines the significance of an infrastructure, which *"if disrupted or destroyed, would have a serious impact on the health, safety, security or economic well-being of citizens*"¹

B. Genge, D.A. Rusu, and P. Haller

April 13, 2014

3 / 41

¹Communication from the Commission to the Council - Critical Infrastructure Protection in the fight against terrorism. COM(2004)0702., October 2004.

Introduction

Industrial Control Systems (ICS): the core of CI

- Architecture includes the cyber and physical domains
- Typical components:
 - The physical process: power plant, chemical process, electricity grid
 - Programmable Logical Controllers (PLC)
 - Master Terminal Units (MTU SCADA servers)
 - Human Machine Interfaces (HMI)
 - Communication infrastructure

ICS networks vs traditional computer networks²

- ICS networks are connected to physical equipment: failure of industrial networks can have severe repercussions
- ICS networks have strong determinism (transmission and reply are predictable)
- ICS communicating nodes are well-known
- ICS include strict real-time requirements, e.g., response time less than 1ms
- ICS installations have longer lifetimes (at least ten years, compared to three years for traditional)

B. Genge, D.A. Rusu, and P. Haller

²B. Galloway and G.P. Hancke, Introduction to Industrial Control Networks, IEEE Communication Surveys & Tutorials, 15(2):860-880, 2013.

Introduction

Industrial Control Systems (ICS): today

- Adoption of Ethernet and IP-based protocols
- COTS hardware and software
- Advantages: new services and features, remote monitoring and maintenance, energy markets, the newly emerging smart grids

ICS security today

- ICS are not isolated environments
- Traditional ICT hardware and software has been strongly integrated into ICS
- Example security concerns:
 - Old operating systems (Windows NT 3.0/4.0, Windows 2000, BSD)
 - Rare patching
 - Low "ICT security perception"
- ICS are typically prone to traditional ICT attacks (Code RED, NIMDA, SLAMMER)

Motivation

ICS security today

- Unfortunately many ICS components are directly accessible from Internet (see Shodan queries)
- Researchers from Free University Berlin have provided a map with SCADA devices connected to the Internet
- Project SHINE discovered more than 1,000,000 SCADA devices connected to the Internet

Motivation

Cyber attack impact on ICS

- In 2007, the potential impact of cyber attacks has been highlighted by the Tempe, Arizona incident (improper configuration of load shedding programs) - result: 141 breakers were opened and there was significant loss of load (46 minutes power outage)
- In August 2010 the discovery of a new kind of malware (Stuxnet) constituted a turning point in ICS security result: more than 100,000 infected stations, target: nuclear enrichment centrifuges
- Early October 2012 a power company reported a virus infection (variant of Mariposa) in a turbine control system - result: downtime for 3 weeks

- Traditional ICT shields
- New mitigation techniques
- New policies

Image: A matrix and a matrix

3 🕨 🖌 🗄

э

In this paper: SPEAR

- SPEAR: systematic approach aimed at modeling the topology of ICS and automatically generating Snort detection rules
- The approach is based on the following assumptions:
 - ICS architectures, once deployed, remain fixed over long time periods (more than 10 years)
 - Communication flows exhibit long-lasting patterns, e.g., connection patterns

Proposed approach

Example ICS architecture and communication flows

- Turbo-Gas power plant
- Green arrows denote allowed communication
- Red arrows denote abnormal communication

Proposed approach

Steps defined in SPEAR

- Step 1: modeling the network of ICS (nodes and traffic flows)
- Step 2: generating Snort detection rules

• □ ▶ < □ ▶ </p>

∃ ► < ∃ ►</p>

ICS model

- Network architecture as a traditional graph model G = (V, E), where V is the set of vertices and E ⊆ V × V is the set of edges
 - Each vertex models typical ICS nodes such as PLC, HMI, RTU, ADS
 - Edges denote typical connections between network components, e.g., wired/wireless links
- Traffic defined as tuple $t = (s, d, k), t \in T$, where $T \subseteq V \times V \times \{tcp, udp\}$

Generating ICS rules

- A breadth-first search (BFS) algorithm is applied to find the path from source to destination (for each traffic flow)
- For each ADS along the path Snort rules are generated to whitelist allowed traffic

- Using BFS algorithm, for each traffic flow *t* the list of ADSs are determined (set *A*)
- For each ADS $a \in A$ the set of traffic flows is calculated $F^a = \bigcup \{t | t \in T \text{ and } a \in adspath(t)\}$
- The set of rules for each ADS $a \in A$ is denoted by R^a
- Rules are generated for Snort. Example:

alert tcp 10.1.1.1 any - > 10.1.1.2 any (msg: "ALERT!")

イロト イポト イヨト イヨト 二日

• Generated rule 1 (for bidirectional UDP/TCP communications):

 $(\{k\}, \{v\}, NOT(H_v^a), \texttt{anyp}, \texttt{alert!}) \Rightarrow R^a$

- $k \in \{tcp, udp\}$: protocol
- $v \in V$: host
- H_v^a : the set of hosts that exchange packets with host v, monitored by ADS a
- ... meaning: generate alert if host v exchanges TCP/UDP packets with any host outside H_v^a

Generated rule 2 and rule 3 (for unidirectional UDP or no TCP packets):

 $(\{k\}, \{v\}, NOT(\{v\}), anyp, anyp, ALERT!) \Rightarrow R^a$ $(\{k\}, NOT(\{v\}), \{v\}, anyp, anyp, ALERT!) \Rightarrow R^a$

- $k \in \{\texttt{tcp}, \texttt{udp}\}$: protocol
- $v \in V$: host
- ... meaning: generate alert if host v sends or receives TCP/UDP packets to/from any host

• Generated rule 4 (no UDP/TCP packets):

 $(\{k\}, \{NOT(V)\}, \{NOT(V)\}, anyp, anyp, ALERT!) \Rightarrow R^{a}$

- $k \in \{tcp, udp\}$: protocol
- ... meaning: generate alert if any other hosts (outside the monitored set) exchange TCP or UDP packets

Implementation details

- We adopted the Emulab NetLab GUI
 - Was developed within the Emulab project
 - SPEAR extends the basic GUI with components specific to ICS

Proposed approach

Implementation details - example

- We defined ICS with process and control network
- Process network: HMI, MTU and ADS
- Control network: three PLCs and ADS
- TCP traffic

Implementation details - example (contd.)

• Typical Emulab ns-2 script

set ns [new Simulator] source tb_compat.tcl # Nodes set MTU0 [\$ns node] tb-set-node-os \$MTU0 ncSCADA-MTU set IDS0 [\$ns node] tb-set-node-os \$IDS0 ncSCADA-IDS # Lans set Switch0 [\$ns make-lan "\$firewall0 \$IDS0 \$PLC0 ..."] set Switch1 [\$ns make-lan "\$firewall0 \$HMI0 \$IDS1 \$MTU0"] # Event Agents set tg0 [new Application/Traffic/CBR] set tg0sink0 [new Agent/TCPSink] \$ns attach-agent \$MTU0 \$tg0src0 \$ns run

Proposed approach

Implementation details - example (contd.)

Generated Snort rules

```
ipvar $MTU0 [10.1.1.2]
```

- 1. alert tcp MTU0 any > ![PLC0,PLC1,PLC2,HMI0] any (...)
- 2. alert tcp ![\$PLC0,\$PLC1,\$PLC2,\$HMI0] any > \$MTU0 any (...)
- 3. alert tcp MI0 any > MTU0 any (...)
- 4. alert tcp \$MTU0 any \$ \$MI0 any (...)
- 5. alert tcp \$firewall0 any > !\$firewall0 any (...)
- 6. alert tcp !\$firewall0 any -> \$firewall0 any (...)
- 7. alert tcp ![\$MTU0 \$PLC0 ...] any -> ![\$MTU0 \$PLC0 ...] any (...)
- 8. alert udp any any > any any (...)

Assessment perspectives

- SPEAR and its generated rules have been assessed from several perspectives:
 - Modeling and generating rules for a laboratory installation with industrial equipment (synthetic attack)
 - Modeling and generating rules for a laboratory installation with traditional PCs (real malware)
 - Modeling and generating rules for simulated infrastructures (synthetic attack)
 - Scalability and execution time of rule generator script

Real industrial equipment + synthetic attack

- We have set-up an experiment consisting of a PLC and HMI software from ABB
- HMI communicated with PLC through Manufacturing Message Specification protocol (MMS)
- HMI also sends Redundant Network Routing Protocol (RNRP) packets over UDP to a specific router
- Generic host to run TCP scans (TCP-SYN, TCP-NULL, TCP-FIN, and TCP-XMAS) with *nmap* software

Real industrial equipment + synthetic attack (contd.)

🚄 jail100bool20stri	ing6UR.pcap [Wireshark 1.10.2 (SVN Rev 51934 from /tru	ink-1.10)]	the region flate		
<u>File Edit View</u>	<u>Go</u> <u>Capture</u> <u>Analyze</u> <u>Statist</u>	ics Telephony <u>T</u> ools	Internals <u>H</u> elp			
0 0 🔏 🔳	1 🖻 🖀 🗶 🔁 🔍	🗢 🔿 🖗 🖗 🌳		. Q. 🗹 👹 🗹 🍢 💥 💢 👘		
Filter:			Expression Cl	ear Apply Save		
Time	Source	Destination	Protocol	Length Info		^
94 1.7112/1	172.10.4.132	172.10.4.21	MMC	152 confirmed DequestDDU		
95 1.749999	172.10.4.21	172.10.4.132	MMC	98 confirmed_ResponseRDU		
97 1 800710	172 16 4 21	172 16 4 152	MMS	152 confirmed_Request RDU		
98 1, 809215	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
99 1, 840322	172.16.4.152	239, 239, 239, 4	LIDP	118 Source port: blackiack	Destination port: rnrp	
100 1.851566	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU	besetting to the transp	
101 1.855689	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
102 1,902287	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		
103 1.910283	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
104 1.949260	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		
105 1.953258	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
106 1.999982	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		
107 2.008727	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
108 2.050828	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		
109 2.060322	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
110 2.101549	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		
111 2.123911	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
112 2.136655	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		
113 2.140277	172.16.4.152	172.16.4.21	MMS	98 confirmed-ResponsePDU		
114 2.152395	172.16.4.21	172.16.4.152	MMS	152 confirmed-RequestPDU		-
115 2 156769	172 16 4 152	172 16 / 21	MMC	00 confirmed BecoopcoDDU		
🔴 💅 File: "D:\Beli	a\PLC Capture Files And Malwar	Packets: 203018 - Displa	ayed: 203018 (100.0%)	· Load time: 0: Profile: Default		

э

Image: A mathematical states of the state

Real industrial equipment + synthetic attack (contd.)

• Detection of the network scan with the rules generated by SPEAR

B. Genge, D.A. Rusu, and P. Haller

April 13, 2014 27 / 41

Traditional PCs + real industry-targeting malware

- We set-up a network with 4 PCs and a monitoring box from HP-S8005F (can monitor up to 16 ports)
- We deliberately infected one of the hosts with Stuxnet
- Stuxnet "installed" successfully
- Stuxnet infected (after 8 hours) all other hosts

Stuxnet - overview

- It was reported in August 2010
- The first (known) malware capable to rewrite the logic of control hardware (Siemens PLCs)
- It is believed that the target was Iran's nuclear program
- It affected the normal functioning of centrifuges

Stuxnet - zero-day vulnerabilities

It exploited 4 zero-day vulnerabilities

- Exploit LNK vulnerability MS10-046 (Windows 2000, Windows Server 2003 and 2008, Windows Vista, Windows XP, Windows 7)
- Exploit MS Spooler vulnerability MS10-061 (Windows 2000, Windows Server 2003 and 2008, Windows Vista, Windows XP, Windows 7)
- Exploit Network Shared Folders and RPC vulnerability MS08-067 (Windows 2000, Windows Server 2003 and 2008, Windows Vista, Windows XP)
- Exploit win32k.sys vulnerability MS10-73 (Windows Server 2003 and 2008, Windows Vista, Windows XP, Windows 7)

イロト イポト イヨト イヨト

Traditional PCs + real industry-targeting malware (contd.)

- Stuxnet creates remote file DEFRAG24681.TMP
- It copies itself on the other host

🚄 stu	.x-201	140324-:	cpsp2-infect	2.pcap [Win	eshark 1.10.	2 (SVN Rev 5	1934 from	/trunk-1.10)]											-	
Eile	Edit	View	Go Captu	ire <u>A</u> nalyze	Statistics	Telephony	Iools Ir	nternals <u>H</u> elp												
	•	6 m	1 Da		10 4	A - 7	e .a. 16		0.6			a 42 5	-							
•	•		361 1 100	ee 🦚 🔛	1.00 4	······································	r 🛎 II		40			9 We 8								
Filter	: !(et	thisrc ==	00:00:00:00:	00:01)			1	Expression	Clear	Apply Save										
No.		Time	Se	urce		Destinat	ion	P	rotocol	Length Ir	fo									
	3173	4964.	781842 1	0.1.150.4		10.1.	150.1	5	SMB	193 N	T Cre	ate And)	X Res	oonse, FI	D: 0x4001					
	3174	4964.	782519 1	0.1.150.1		10.1.	150.4	5	5MB	130 1	rans2	Request	t, QUI	RY_FILE_	INFO, FID	: 0x4001,	Query Fi	ile Inte	ernal Info	
	3176	4964.	783383 1	0.1.150.4		10.1.	150.1	5	SMB	126 1	nans2	Respons	se, F	tD: 0x400	L, QUERY_F	ILE_INFO)			
	3177	4964.	784275 1	0.1.150.1		10.1.	150.4	5	SMB	174 1	rans2	Request	t, SE	FILE_IN	FO, FID: (0x4001				
	3179	4964.	785757 1	0.1.150.4		10.1.	150.1	5	SMB	118 1	rans2	Respons	se, F	ED: 0x400	L, SET_FI	E_INFO				
3	3180	4964.	790732 1	0.1.150.1		10.1.	150.4	5	5MB	99 0	lose	Request	, FID	0x4001						
	3182	4964.	798640 1	0.1.150.4		10.1.	150.1	6	5MB	93 C	lose	Response	e, FI	c): 0x4001						
		4964.	799892 1	0.1.150.1		10.1.	150.4		SMB	222 🕅	IT Cre	eate And	x Req	Jest, FID	: 0x4002,	Path: \E		and Set	tings\DEF:	RAG24681.TMP
	3185	4964.	801145 1	0.1.150.4		10.1.	150.1	5	SMB	193 N	T Cre	eate And)	X Res	oonse, FI	o: 0x4002					
	3186	4964.	802076 1	0.1.150.1		10.1.	150.4	5	SMB	130 1	rans2	Request	t, QUI	RY_FILE_	INFO, FID	: 0x4002,	, Query Fi	ile Basi	c Info	
	3188	4964.	802498 1	0.1.150.4		10.1.	150.1	5	5MB	158 1	rans2	Respons	se, F	LD: 0x400	2, QUERY_F	ILE_INFO)			
	3189	4964.	939580 1	0.1.150.1		10.1.	150.4	5	SMB	138 1	rans2	Request	t, QUI	RY_FS_IN	≔o, Info⊅	allocatio	on			
	3191	4964.	940449 1	0.1.150.4		10.1.	150.1	5	SMB	132 1	rans2	Respons	se, Q	JERY_FS_I	NFO					
	3192	4964.	941069 1	0.1.150.1		10.1.	150.4	5	SMB	123 V	rite	AndX Red	quest	, FID: Ox	4002, 1 by	/te at of	ffset 5217	727		
	3194	4964.	945709 1	0.1.150.4		10.1.	150.1	5	SMB	105 V	rite	AndX Res	spons	≥, FID: 0	4002, 1 k	oyte				
	3195	4964.	946309 1	0.1.150.1		10.1.	150.4	5	5MB	138 1	rans2	Request	t, QUI	RY_FILE_	INFO, FID	: 0x4002,	, Query Fi	ile stan	ndard Info	
	3197	4964.	946985 1	0.1.150.4		10.1.	150.1	5	SMB	142 1	rans2	Respons	se, F	ED: 0x400	2, QUERY_F	ILE_INFO)			
	3198	4964.	956221 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3199	4964.	956507 1	0.1.150.1		10.1.	150.4	1	ICP .	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3200	4964.	956677 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3201	4964.	956838 1	0.1.150.1		10.1.	150.4	1	TCP	1514	TCP 5	egment o	ofaı	eassembl	ed PDU]					
	3202	4964.	956844 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP 5	egment o	ofaı	eassembl	ed PDU]					
	3203	4964.	956848 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3204	4964.	956850 1	0.1.150.1		10.1.	150.4	1	ICP .	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3205	4964.	956851 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3206	4964.	956866 1	0.1.150.1		10.1.	150.4	1	TCP	1514	TCP 5	egment o	ofai	eassembl	ed PDU]					
	3207	4964.	956945 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP 5	egment o	ofaı	eassembl	ed PDU]					
	3208	4964.	957067 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3209	4964.	957192 1	0.1.150.1		10.1.	150.4	1	TCP	1514 [TCP S	egment o	ofaı	eassembl	ed PDU]					
	3210	4964.	957314 1	0.1.150.1		10.1.	150.4	1	TCP	1514	TCP S	egment o	ofai	eassembl	ed PDU]					

Traditional PCs + real industry-targeting malware (contd.)

• The newly infected host begins to test for Internet connectivity (www.windowsupdate.com and www.msn.com)

-																									
A 5	tux-20	0140324-:	ipsp2	-infect-2	pcap [Wir	eshark 1.10	2 (SVN R	ev 51934 fi	om /trunk-1	.10)]															
Eile	Edit	t <u>V</u> iew	Go	Capture	Analyze	Statistics	Telepho	ny <u>T</u> ools	Internals	Help															
-	0			Cm 17	. M 6			-				m 1 s	a (57)	1	52										
Ð	۲	<u>a</u> =	<u> (</u>			190	, ay 😡	• • ×		ા લ લ	a a			1 - 10 - 10	9										
Filt	er Ili	ath arc	00-00	00-00-00-	01)				- Evore	ssion C	lear A	nnly Sa	ve												
	. In	compre	00100		vx)				- copie		1001 71	ppi) 00													
No.		Time		Sour	ce		Dest	tination		Prot	ocol	Length	Info												
	372	5 4965.	048	69 10.	1.150.1		10.	.1.150.4		TCP	•	1514	[TCP	segment	of a	reass	emble	d PDU]							
	372	8 4965.	0487	90 10.	1.150.4		10.	.1.150.1		TCP	•	60) netbi	ios-ssn	> ndnm	nshc [ACK]	seq=587	5 Ack=495	718	win=35868	Len-	0		
	372	9 4965.	0484	803 10.	1.150.1		10.	.1.150.4		TCP	,	1514	[TCP	segment	of a	reass	emble	d PDU]							
	373	0 4965.	048	324 10.	1.150.1		10.	.1.150.4		TCP	•	1514	[TCP	segment	of a	reass	emble	d PDU]							
	373	L 4965.	0493	37 10.	1.150.1		10.	.1.150.4		TCP	•	1514	[TCP	segment	of a	reass	emble	d PDU]							
	373	2 4965.	049:	51 10.	1.150.1		10.	.1.150.4		TCP	>	1514	[TCP	segment	ofa	reass	emble	d PDU]							
	373	3 4965.	049:	62 10.	1.150.1		10.	.1.150.4		TCP	•	1514	[TCP	segment	ofa	reass	emple	d PDU]							
	3734	4 4965.	049	.88 10.	1.150.1		10.	.1.150.4		TCP	•	1514	[TCP	segment	of a	reass	emble	d PDU]							
	373	5 4965.	0492	252 10.	1.150.4		10.	.1.150.1		TCP	•	60) netbi	ios-ssn	> rdrn	nshc [ACK]	Seq=587	5 Ack=501	558	Win=30028	Len=	0		
	373	8 4965.	049	510 10.	1.150.4		10.	.1.150.1		TCP	•	60	netbi	ios-ssn	> rdrm	nshc [ACK]	Seq=587	5 Ack=507	398	win=24188	Len=	D		
	373	9 4965.	049	642 10.	1.150.1		10.	.1.150.4		TCP	>	1514	[TCP	segment	ofa	reass	emple	d PDU]							
	3740	0 4965.	049	644 10.	1.150.1		10.	.1.150.4		SMB	3	1106	iWrite	a AndX R	equest	, FID	: 0x4	002, 62	976 bytes	at	offset 45	8752			
	3742	2 4965.	0499	975 10.	1.150.4		10.	.1.150.1		TCP	•	60) netbi	ios-ssn	> rdrm	nshc [ACK]	Seq=587	5 Ack=511	778	Win=19808	Len=	0		
	3744	4 4965.	0504	45 10.	1.150.4		10.	.1.150.1		TCP	•	60) netbi	ios-ssn	> rdrn	nshc [ACK]	Seq=587	5 Ack=516	158	win=15428	Len=	D		
	374	5 4965.	0509	06 10.	1.150.4		10.	.1.150.1		TCP	>	60	netbi	ios-ssn	> rdrm	nshc [ACK]	seq=587	5 Ack=521	998	win=9588	Len=0			
	3741	8 4965.	0510	89 10.	1.150.4		10.	.1.150.1		TCP	•	60) netbi	ios-ssn	> rdrm	nshc [ACK]	Seq=587	5 Ack=525	970	win=5616	Len=0			
	375	0 4965.	051	555 10.	1.150.4		10.	.1.150.1		TCP	•	60	[TCP	Window	Update	e] net	bios-	ssn > ri	drmshc [A	CK]	Seq=5876	Ack=5	25970 Wir	1=64240	Len=0
	375	2 4965.	052:	64 10.	1.150.4		10.	.1.150.1		SMB	8	105	Write	e AndX R	espons	se, FI	D: 0x	4002, 6	2976 byte	s					
	375	3 4965.	0549	967 10.	1.150.1		10.	.1.150.4		SMB	3	174	Trans	52 Reque	st, SE	T_FIL	E_INF	D, FID:	0x4002						
	375	5 4965.	0557	74 10.	1.150.4		10.	.1.150.1		SMB	3	118	Trans	52 Respo	nse, F	ID: 0	x4002	, SET_F	LE_INFO						
	375	5 4965.	056	53 10.	1.150.1		10.	.1.150.4		SMB	3	99	Close	e Reques	t, FID	0: 0x4	002								
	375	8 4965.	0570	043 10.	1.150.4		10.	.1.150.1		SMB	8	93	Close	e Respor	ise, Fl	D: Ox	4002								
	375	9 4965.	0580	002 10.	1.150.1		10.	.1.150.4		Soc	:ks	1514	versi	ion: 5											
	376	0 4965.	0580	017 10.	1.150.1		10.	.1.150.4		500	:ks	722	versi	ion: 5											
	376	2 4965.	0589	982 10.	1.150.4		10.	.1.150.1		TCP	•	60	gmrup	odateser	v > sc	ocks [ACK]	Seq=214	35 Ack=27	00 W	n=64240	Len=0			
	376	3 4965.	212	35 10.	1.150.1		10.	.1.150.4		TCP	•	54	rdrms	shc > ne	tbios-	-ssn [ACK]	Seq=526:	L35 Ack=6	030	Win=63094	Len=	0		
	376	5 4966.	5652	02 10.	1.150.4		10.	.1.150.1		Soc	:ks	1270) versi	ion: 5											
	376	5 4966.	7520	99 10.	1.150.1		10.	.1.150.4		TCP	b	54	socks	s > gmru	pdates	serv [ACK]	5eq=270) Ack=227	01 W	n=64240	Len=0			
	376	8 4968.	482:	.58 cis	co_2f:4	3:81	ci	sco_2f:4	3:81	LOC	P	60	Reply	/											
	377	0 4969.		319 10.	1.150.4			8.8.8						dand que	ry Oxa		A www								
	377:	L 4969.	125	327 10.	1.150.4		8.1	8.8.8		DNS	5	81	Stand	dard que	ry Oxa	ae7c	A www	.window	supdate.c	om					
	3773	2 4969.	1259	977 10.	1.150.4		8.1	8.8.8		DNS	5	81	. Stand	dard que	ry Oxa	ae7c	A www	.window	supdate.c	om					
	3774	4 4970.	1197	70 10.	1.150.4		8.1	8.8.8		DNS	5	81	. stand	dard que	ry Oxa	ae7c	A www	.window:	supdate.c	om					
	377	5 4970.	1197	81 10.	1.150.4		8.1	8.8.8		DNS	5	81	Stand	dard que	ry Oxa	ae7c	A www	.window:	supdate.c	om					
D	C	marco		A D		and D	Hall	~ *				C	DEA	D							Anvil	12	2014		32 / 1

PEAR

Traditional PCs + real industry-targeting malware (contd.)

• The newly infected host begins to test for Internet connectivity (www.windowsupdate.com and www.msn.com)

stux-20	0140324-	xpsp2-infect-2.pcap [Wireshark 1	.10.2 (SVN Rev 51934 from /trunk-1.10)]		
Eile Edit	t <u>V</u> iew	<u>Go</u> <u>Capture</u> <u>Analyze</u> <u>Statisti</u>	cs Telephony <u>I</u> ools Internals <u>H</u> elp	,	
00	<i>4</i> H			00	
••					
Filter: !(e	eth.src ==	: 00:00:00:00:00:01)	 Expression. 	Clear	Apply Save
No.	Time	Source	Destination	Protocol	Length Info
3875	5 4993.	828959 10.1.150.1	10.1.150.4	TCP	54 imgames > epmap [ACK] Seq=1134 Ack=1390 Win=62852 Len=0
3877	7 4998.	501016 Cisco_2f:43:81	cisco_2f:43:81	LOOP	60 Reply
3879	9 5008.	509899 cisco_2f:43:81	cisco_2f:43:81	LOOP	60 Reply
3881	1 5010.	783783 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3882	2 5010.	783787 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3883	3 5010.	783965 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3885	5 5011.	778517 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3886	5 5011.	778525 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
		144016 Cisco_2f:43:81	CDP/VTP/DTP/PAgP/UDLD	DTP	60 Dynamic Trunking Protocol
		144109 Cisco_2f:43:81			90 Dynamic Trunking Protocol
3892	2 5012.	778745 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
389	3 5012.	778754 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3895	5 5014.	782801 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3897	7 5018.	510629 Cisco_2f:43:81	Cisco_2f:43:81	LOOP	60 Reply
3899	9 5018.	779704 10.1.150.4	8.8.8.8	DNS	81 Standard query 0x2bfb A www.windowsupdate.com
3901	1 5025.	785646 10.1.150.4	8.8.8.8	DNS	71 Standard query 0xf2fb A www.msn.com
3902	2 5025.	785656 10.1.150.4	8.8.8.8	DNS	71 Standard query Oxt2tb A www.msn.com
390	3 5025.	785806 10.1.150.4	8.8.8.8	DNS	71 Standard query 0xf2fb A www.msn.com
3905	5 5026.	780834 10.1.150.4	8.8.8.8	DNS	71 Standard query 0xf2fb A www.msn.com
3906	5 5026.	780838 10.1.150.4	8.8.8.8	DNS	71 Standard query 0xf2fb A www.msn.com
3908	8 5027.	781018 10.1.150.4	8.8.8.8	DNS	71 Standard query 0xf2fb A www.msn.com
3909	9 5027.	/81028 10.1.150.4	8.8.8.8	DNS	/1 Standard query 0xf2fb A www.msn.com
3911	1 5028.	519590 C1sco_2f:43:81	C1SC0_27:43:81	LOOP	60 Reply
3913	3 5029.	/81595 10.1.150.4	8.8.8.8	DNS	/1 Standard query UXT2TD A www.msn.com
3915	5 5033.	/82308 10.1.150.4	8.8.8.8	DNS	/1 Standard query UXT2TD A www.msn.com

Traditional PCs + real industry-targeting malware (contd.)

Simulated networks, traffic and attack

- We recreated in ns-3 a (larger) typical ICS topology with two networks: control and process
- For each network we defined 10 nodes, regular UDP and malicious traffic
- We used SPEAR to model the topology and to generate detection rules
- The ns-3 traffic was exported to pcap files and we used Snort (configured with SPEAR's rules) to detect the attack

Simulated networks, traffic and attack (contd.)

- Two settings:
 - Setting 1: attack rate similar to regular traffic
 - Setting 2: attack rate 30 times smaller than regular traffic

B. Genge, D.A. Rusu, and P. Haller

36 / 41

Rule generator execution time

- We evaluated the execution time of SPEAR's rule generator
- We generated a total of 10 different topology descriptions (ns-2)
- For each topology the dimension was gradually increased with a number of 10 networks (10hosts + 1 ADS/network)
- Traffic was defined between hosts and between networks

Rule generator execution time (contd.)

- The definition of connection patterns in the core of CI can lead to effective detection of traffic anomalies
- The learning phase from other approaches is replaced by expert knowledge and formal description language
- Detection rules are generated for a well-known detection engine: Snort
- SPEAR's main contribution:
 - It automatizes the rule generation procedure for ICSs and a well-established detection engine, i.e., Snort, by employing available open-source tools

Conclusions

Conclusions (contd.)

- Future work:
 - Extend the supported protocols for more expressive modeling capabilities
 - Integrate automated traffic learning techniques (carefully planned)
- SPEAR is available as open-source

(http://www.ibs.ro/~bela/conpat.html)

SPEAR for Industrial Control Systems (ICSs) Security

The adaption of open and velop used attacheds let to a known in the gosts of exposure and velocatiby of holosted control systems. Thereases, the devolgence of constraints of the source and the source of the source and constraints attaction from the accelerate community. This project gosts bypected resulting spreads an and exposed attaction for the accelerate community. This project gosts bypect existing spreads and provides a most devolved bypecting the source of the so

The approach has been fully documented in the paper "A Connection Pattern-based Approach to Detect Network Traffic Anomalies in Critical Instanturctures", submitted for review to the seventh European Workshop on Systems Security (EuroSec2014), Proliminary isosaich have been patholied in the student paper available here.

This page provides source code of applications and scripts used in the validation of SPEAR. Code found on this page is provided under the GNU Public License.

Home Teaching Publications Activities Contact

< ロ > < 同 > < 回 > < 回 > < 国 > < 国

April 13, 2014

40 / 41

Requirements

 Modified Netlab Client: The modified client sources can be downloaded from here while the jurifier can be downloaded from here. The original unmodified version can be found on the Emulab site. The ns files we built are based on three ICS topologies, as described in "Guide to Industrial Control IJCS) Security" (INST 2011), and can be downloaded from here.

2. Python scripts: The first and second script were developed in Python 2.7.

3. NS-3 scripts: The scripts can be downloaded from here. For details on how to install NS-3 on your computer, please follow the instructions from the official website.

4. SNORT 2.8.5.3: The version we used is the one provided with Quickdraw IDS, which requires preprocessors to be

Thank you!

*ロト *部ト *注ト *注ト

æ